A study of certain functional equations for the theta-functions

被引:2
作者
Van Vleck, E. B. [1 ]
H'Doubler, F. [1 ]
机构
[1] Univ Wisconsin, Madison, WI USA
关键词
D O I
10.1090/S0002-9947-1916-1501028-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:9 / 49
页数:41
相关论文
共 50 条
[31]   THE THETA-FUNCTIONS OF SUBLATTICES OF THE LEECH LATTICE [J].
KONDO, T ;
TASAKA, T .
NAGOYA MATHEMATICAL JOURNAL, 1986, 101 :151-179
[32]   Macdonald identities and multidimensional theta-functions [J].
Vsemirnov M.A. .
Journal of Mathematical Sciences, 1999, 96 (5) :3486-3492
[33]   THETA-FUNCTIONS OF TOTALLY DEGENERATE CURVES [J].
GERRITZEN, L .
ARCHIV DER MATHEMATIK, 1992, 59 (03) :302-312
[34]   CLASSICAL THETA-FUNCTIONS AND QUANTUM TORI [J].
WEINSTEIN, A .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1994, 30 (02) :327-333
[35]   THETA-FUNCTIONS, MODULAR INVARIANCE, AND STRINGS [J].
ALVAREZGAUME, L ;
MOORE, G ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (01) :1-40
[36]   THE CONTINUUM-LIMIT OF THETA-FUNCTIONS [J].
VENAKIDES, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :711-728
[37]   ON SOME NEW MIXED MODULAR EQUATIONS INVOLVING RAMANUJAN'S THETA-FUNCTIONS [J].
Naika, M. S. Mahadeva ;
Chandankumar, S. ;
Harish, M. .
MATEMATICKI VESNIK, 2014, 66 (03) :283-293
[38]   THETA-FUNCTIONS AND HILBERT MODULAR FORMS [J].
KUDLA, SS .
NAGOYA MATHEMATICAL JOURNAL, 1978, 69 (FEB) :97-106
[39]   SUPER THETA-FUNCTIONS AND THE WEIL REPRESENTATION [J].
LO, WT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (08) :2739-2748
[40]   GENERALIZED SU(2) THETA-FUNCTIONS [J].
BERTRAM, A .
INVENTIONES MATHEMATICAE, 1993, 113 (02) :351-372