Fracture of piezoelectric materials with the X-FEM

被引:6
作者
Bechet, Eric [1 ]
Scherzer, Matthias [2 ]
Kuna, Meinhard [2 ]
机构
[1] Univ Metz, UMR CNRS 7554, Labo Phys & Mecan Materiaux, Ile Saulcy, F-57045 Metz 1, France
[2] Inst Mech & Fluiddynam, TU Bergakademie, D-09596 Freiberg, Germany
来源
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS | 2008年 / 17卷 / 5-7期
关键词
piezoelectric materials; crack; finite elements; X-FEM;
D O I
10.3166/REMN.17.637-649
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present an application of X-FEM to the fracture analysis of piezoelectric materials. These materials are increasingly used in actuators and sensors. Under in service loading, phenomena of crack initiation and propagation may occur due to high electromechanical field concentrations. In the past few years, the extended finite element method (X-FEM) has been applied mostly to model cracks in structural materials. The present paper focuses on the definition of new enrichment functions suitable for cracks in piezolectric structures. The approach is based on specific asymptotic crack tip solutions, derived for piezoelectric materials.
引用
收藏
页码:637 / 649
页数:13
相关论文
共 13 条
[1]   Improved implementation and robustness study of the X-FEM for stress analysis around cracks [J].
Béchet, E ;
Minnebol, H ;
Moës, N ;
Burgardt, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (08) :1033-1056
[2]  
Bechet E., 2008, INT J NUMERIC UN PUB
[3]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[4]  
2-S
[5]   Appropriate extended functions for X-FEM simulation of plastic fracture mechanics [J].
Elguedj, T ;
Gravouil, A ;
Combescure, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (7-8) :501-515
[6]  
Moes N, 1999, INT J NUMER METH ENG, V46, P131, DOI 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO
[7]  
2-J
[8]  
MUSSCHELICHWILI NI, 1971, EINIGE GRUNDAUFGABEN
[9]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[10]   Combined analytical and numerical solution of 2D interface corner configurations between dissimilar piezoelectric materials [J].
Scherzer, M ;
Kuna, M .
INTERNATIONAL JOURNAL OF FRACTURE, 2004, 127 (01) :61-99