ALMOST GLOBAL EXISTENCE OF SMALL SOLUTIONS TO QUADRATIC NONLINEAR SCHRODINGER-EQUATIONS IN 3 SPACE DIMENSIONS

被引:17
作者
GINIBRE, J [1 ]
HAYASHI, N [1 ]
机构
[1] GUNMA UNIV, FAC ENGN, DEPT MATH, KIRYU, GUMMA 376, JAPAN
关键词
D O I
10.1007/BF02572354
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:119 / 140
页数:22
相关论文
共 50 条
[31]   CLASSICAL-SOLUTIONS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
HAYASHI, N .
MANUSCRIPTA MATHEMATICA, 1986, 55 (02) :171-190
[32]   Global Existence for Two Dimensional Quadratic Derivative Nonlinear Schrodinger Equations [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) :732-752
[33]   GLOBAL-SOLUTIONS AND STABLE GROUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS [J].
STUBBE, J .
PHYSICA D, 1991, 48 (2-3) :259-272
[35]   Almost Global Existence for the Fractional Schrodinger Equations [J].
Mi, Lufang ;
Cong, Hongzi .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (03) :1553-1575
[36]   GLOBAL EXISTENCE OF SMALL SOLUTIONS TO QUADRATIC NONLINEAR-WAVE EQUATIONS IN AN EXTERIOR DOMAIN [J].
HAYASHI, N .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 131 (02) :302-344
[38]   Almost global existence for quasilinear wave equations in three space dimensions [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (01) :109-153
[39]   A THEOREM OF GLOBAL EXISTENCE OF SOLUTIONS TO NONLINEAR-WAVE EQUATIONS IN 4 SPACE DIMENSIONS [J].
GAO, JM .
MONATSHEFTE FUR MATHEMATIK, 1990, 109 (02) :123-134
[40]   ON THE SOLUTIONS OF A GENERAL-CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
ELIZALDE, E .
PHYSICS LETTERS A, 1992, 162 (02) :167-170