ALMOST GLOBAL EXISTENCE OF SMALL SOLUTIONS TO QUADRATIC NONLINEAR SCHRODINGER-EQUATIONS IN 3 SPACE DIMENSIONS

被引:17
作者
GINIBRE, J [1 ]
HAYASHI, N [1 ]
机构
[1] GUNMA UNIV, FAC ENGN, DEPT MATH, KIRYU, GUMMA 376, JAPAN
关键词
D O I
10.1007/BF02572354
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:119 / 140
页数:22
相关论文
共 50 条
[21]   Global existence results for nonlinear Schrodinger equations with quadratic potentials [J].
Carles, R .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) :385-398
[22]   GLOBAL EXISTENCE AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS FOR THE MAXWELL-SCHRODINGER EQUATIONS IN 3 SPACE DIMENSIONS [J].
TSUTSUMI, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :543-576
[23]   Quadratic derivative nonlinear Schrodinger equations in two space dimensions [J].
Bernal-Vilchis, Fernando ;
Hayashi, Nakao ;
Naumkin, Pavel I. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03) :329-355
[24]   Almost global existence for nonlinear wave equations in an exterior domain in two space dimensions [J].
Kubo, Hideo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (08) :2765-2800
[25]   GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SMALL SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS IN 3D [J].
Kawahara, Yuichiro .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (02) :169-194
[27]   Global existence of small solutions to semilinear Schrodinger equations [J].
Chihara, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (1-2) :63-78
[28]   LOCAL REGULARITY OF SOLUTIONS TO NONLINEAR SCHRODINGER-EQUATIONS [J].
SJOLIN, P .
ARKIV FOR MATEMATIK, 1990, 28 (01) :145-157
[29]   REGULARITY IN TIME OF SOLUTIONS TO NONLINEAR SCHRODINGER-EQUATIONS [J].
HAYASHI, N ;
KATO, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (02) :253-277
[30]   ANALYTIC SOLUTIONS TO NONELLIPTIC NONLINEAR SCHRODINGER-EQUATIONS [J].
DEBOUARD, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (01) :196-213