PREEXPOSURE TO GLUCOSAMINE INDUCES INSULIN-RESISTANCE OF GLUCOSE-TRANSPORT AND GLYCOGEN-SYNTHESIS IN ISOLATED RAT SKELETAL-MUSCLES - STUDY OF MECHANISMS IN MUSCLE AND IN RAT-1 FIBROBLASTS OVEREXPRESSING THE HUMAN INSULIN-RECEPTOR

被引:155
作者
ROBINSON, KA
SENS, DA
BUSE, MG
机构
[1] MED UNIV S CAROLINA, DEPT MED, DIV ENDOCRINOL, 171 ASHLEY AVE, CHARLESTON, SC 29425 USA
[2] MED UNIV S CAROLINA, DEPT BIOCHEM MOLEC BIOL & PATHOL, CHARLESTON, SC 29425 USA
关键词
D O I
10.2337/diabetes.42.9.1333
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Increased routing of glucose through the hexosamine-biosynthetic pathway has been implicated in the development of glucose-induced insulin resistance of glucose transport in cultured adipocytes. Because both glucosamine and glucose enter this pathway as glucosamine-6-phosphate, we examined the effects of preincubation with glucosamine in isolated rat diaphragms and in fibroblasts overexpressing the human insulin receptor (HIR-cells). In muscles, pre-exposure to glucosamine inhibited subsequent basal and, to a greater extent, insulin-stimulated glucose transport in a time- and dose-dependent manner and abolished the stimulation by insulin of glycogen synthesis. Insulin receptor number, activation of the insulin receptor tyrosine kinase in situ and after solubilization, and the total pool of glucose transporters (GLUT4) were unaffected, and glycogen synthase was activated by glucosamine pretreatment. In HIR-cells, which express GLUT1 and not GLUT4, basal and insulin-stimulated glucose trans rt were unaffected by glucosamine, but glycogen synthesis was markedly inhibited. Insulin-stimulated activation of protein kinases (MAP and S6) was unaffected, and the fractional velocity and apparent total activity of glycogen synthase was increased in glucosamine-treated HIR-cells. In pulse-labeling studies, addition of glucosamine during the chase prolonged processing of insulin proreceptors to receptors and altered the electrophoretic mobility of proreceptors and processed alpha-subunits, consistent with altered glycosylation. Glucosamine-induced insulin resistance of glucose transport appears to be restricted to GLUT4-expressing cells, i.e., skeletal muscle and adipocytes; it may reflect impaired translocation of GLUT4 to the plasmalemma. The glucosamine-induced imbalance in UDP sugars, i.e., increased UDP-N-acetylhexosamines and decreased UDP-glucose, may alter glycosylation of critical proteins and limit the flux of glucose into glycogen.
引用
收藏
页码:1333 / 1346
页数:14
相关论文
共 47 条
  • [1] EFFECT OF DENERVATION ON THE EXPRESSION OF 2 GLUCOSE TRANSPORTER ISOFORMS IN RAT HINDLIMB MUSCLE
    BLOCK, NE
    MENICK, DR
    ROBINSON, KA
    BUSE, MG
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1991, 88 (05) : 1546 - 1552
  • [2] PURIFICATION AND PROPERTIES OF EXTRACELLULAR SIGNAL-REGULATED KINASE-1, AN INSULIN-STIMULATED MICROTUBULE-ASSOCIATED PROTEIN-2 KINASE
    BOULTON, TG
    GREGORY, JS
    COBB, MH
    [J]. BIOCHEMISTRY, 1991, 30 (01) : 278 - 286
  • [3] BUCHS AE, 1992, 74TH ANN M END SOC S, P56
  • [4] INSULIN RESISTANCE OF DENERVATED RAT MUSCLE - A MODEL FOR IMPAIRED RECEPTOR-FUNCTION COUPLING
    BURANT, CF
    LEMMON, SK
    TREUTELAAR, MK
    BUSE, MG
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1984, 247 (05): : E657 - E666
  • [5] BURANT CF, 1991, RECENT PROG HORM RES, V47, P349
  • [6] BURANT CF, 1986, J BIOL CHEM, V261, P8985
  • [7] INCREASED HEPATIC INSULIN PRORECEPTOR-TO-RECEPTOR RATIO IN DIABETES - A POSSIBLE PROCESSING DEFECT
    DARDEVET, D
    KOMORI, K
    GRUNFELD, C
    ROSENZWEIG, SA
    BUSE, MG
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 261 (05): : E562 - E571
  • [8] DEFRONZO RA, 1992, ADV ENDOCRINOLOGY ME, V3, P1
  • [9] THE MOLECULAR MECHANISM BY WHICH INSULIN STIMUALTES GLYCOGEN-SYNTHESIS IN MAMMALIAN SKELETAL-MUSCLE
    DENT, P
    LAVOINNE, A
    NAKIELNY, S
    CAUDWELL, FB
    WATT, P
    COHEN, P
    [J]. NATURE, 1990, 348 (6299) : 302 - 308
  • [10] ELBEIN AD, 1987, ANNU REV BIOCHEM, V56, P497, DOI 10.1146/annurev.biochem.56.1.497