LEARNING AUTOMATA FROM ORDERED EXAMPLES

被引:0
作者
PORAT, S [1 ]
FELDMAN, JA [1 ]
机构
[1] UNIV ROCHESTER,DEPT COMP SCI,ROCHESTER,NY 14627
关键词
LEARNING; FINITE AUTOMATA; CONNECTIONIST; REGULAR SETS; IDENTIFICATION; COMPLEXITY; INFERENCE; QUERIES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Connectionist learning models have had considerable empirical success, but it is hard to characterize exactly what they learn. The learning of finite-state languages (FSL) from example strings is a domain which has been extensively studied and might provide an opportunity to help understand connectionist learning. A major problem is that traditional FSL learning assumes the storage of all examples and thus violates connectionist principles. This paper presents a provably correct algorithm for inferring any minimum-state deterministic finite-state automata (FSA) from a complete ordered sample using limited total storage and without storing example strings. The algorithm is an iterative strategy that uses at each stage a current encoding of the data considered so far, and one single sample string. One of the crucial advantages of our algorithm is that the total amount of space used in the course of learning for encoding any finite prefix of the sample is polynomial in the size of the inferred minimum state deterministic FSA. The algorithm is also relatively efficient in time and has been implemented. More importantly, there is a connectionist version of the algorithm that preserves these properties. The connectionist version requires much more structure than the usual models and has been implemented using the Rochester Connectionist Simulator. We also show that no machine with finite working storage can iteratively identify the FSL from arbitrary presentations.
引用
收藏
页码:109 / 138
页数:30
相关论文
共 30 条
[1]   A NOTE ON THE NUMBER OF QUERIES NEEDED TO IDENTIFY REGULAR LANGUAGES [J].
ANGLUIN, D .
INFORMATION AND CONTROL, 1981, 51 (01) :76-87
[2]   COMPLEXITY OF MINIMUM INFERENCE OF REGULAR SETS [J].
ANGLUIN, D .
INFORMATION AND CONTROL, 1978, 39 (03) :337-350
[3]   LEARNING REGULAR SETS FROM QUERIES AND COUNTEREXAMPLES [J].
ANGLUIN, D .
INFORMATION AND COMPUTATION, 1987, 75 (02) :87-106
[4]  
Angluin D., 1976, THESIS U CALIFORNIA
[5]  
ANGLUIN DANA., 1983, ACM COMPUT SURV, V15, P237
[6]  
[Anonymous], 1973, Finite Automata
[7]  
[Anonymous], 1986, Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists
[8]  
[Anonymous], 1969, PhD thesis
[9]  
BIERMANN AW, 1978, IEEE T COMPUT, V21, P592
[10]  
BROOKS RA, 1987, P C F AI CAMBRIDGE