Guaranteed estimation of parameters of threshold autoregressive process with conditional heteroskedasticity

被引:0
作者
Burkatovskaya, Yulia B. [1 ]
Vorobeychikov, Sergey E.
机构
[1] Tomsk Polytech Univ, Tomsk, Russia
来源
VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE | 2013年 / 23卷 / 02期
关键词
TAR/ARCH; least squares method; mean square error; guaranteed estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:32 / 41
页数:10
相关论文
共 10 条
[1]  
ANDERSON T, 1976, STATISTICHESKIY ANAL
[2]  
Chen R., 1991, ANN APPL PROBAB, V1, P613, DOI [10.1214/aoap/1177005841, DOI 10.1214/AOAP/1177005841]
[3]  
Dmitrienko A. A., 1995, PROBL PEREDACHI INF, V31, P51
[4]  
KONEV VV, 1977, AVTOMAT TELEMEKH, P58
[5]   A note on geometric ergodicity of a multiple threshold AR(1) processes on the boundary region with application to integrated m-m processes [J].
Lee, O. ;
Shin, D. W. .
ECONOMICS LETTERS, 2007, 96 (02) :226-231
[6]   Sequential point estimation of parameters in a threshold AR(1) model [J].
Lee, S ;
Sriram, TN .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) :343-355
[7]  
Liptser R.Sh., 1986, TEORIYA MARTINGALOV
[8]  
Mein Sean, 1993, MARKOV CHAINS STOCHA
[9]   A note on the geometric ergodicity of a nonlinear AR-ARCH model [J].
Meitz, Mika ;
Saikkonen, Pentti .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (7-8) :631-638
[10]   A THRESHOLD AR(1) MODEL [J].
PETRUCCELLI, JD ;
WOOLFORD, SW .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (02) :270-286