ON LOCALLY LIPSCHITZ LOCALLY COMPACT TRANSFORMATION GROUPS OF MANIFOLDS

被引:0
作者
Michael, George A. A. [1 ]
机构
[1] Voorhees Coll, Dept Math, Denmark, SC 29042 USA
来源
ARCHIVUM MATHEMATICUM | 2007年 / 43卷 / 03期
关键词
locally Lipschitz transformation group; Hilbert-Smith conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that a "locally Lipschitz" locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Re-povs-Scepin Theorem [17] which holds only for Riemannian manifolds.
引用
收藏
页码:159 / 162
页数:4
相关论文
共 18 条
[1]   LOCALLY COMPACT GROUPS OF DIFFERENTIABLE TRANSFORMATIONS [J].
BOCHNER, S ;
MONTGOMERY, D .
ANNALS OF MATHEMATICS, 1946, 47 (04) :639-653
[2]  
Bourbaki N., 1971, TOPOLOGIE GEN
[3]  
BREDON GE, 1961, T AM MATH SOC, V99, P488, DOI 10.2307/1993558
[4]  
Dieudonne J., 1960, FDN MODERN ANAL
[5]  
Dress A., 1969, TOPOLOGY, V8, P203
[6]  
Federer H., 1969, GEOMETRIC MEASURE TH
[8]  
Kuranishi M., 1950, NAGOYA MATH J, V1, P71
[9]  
Michael G., 2001, TSUKUBA J MATH, V25, P13
[10]  
Montgomery D., 1955, TOPOLOGICAL TRANSFOR, pxi+282