RENORMALIZATION APPROACH TO QUASI-PERIODIC QUANTUM SPIN CHAINS

被引:11
|
作者
KETOJA, JA
SATIJA, II
机构
[1] GEORGE MASON UNIV, DEPT PHYS, FAIRFAX, VA 22030 USA
[2] GEORGE MASON UNIV, INST COMPUTAT SCI & INFORMAT, FAIRFAX, VA 22030 USA
关键词
D O I
10.1016/0378-4371(95)00167-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A renormalization scheme which takes into account the natural frequency of the system is developed to study an anisotropic quantum XY spin chain in a quasiperiodic transverse field. The quasiparticle excitations of the model exhibit extended, localized as well as critical phase, with fractal characteristics, in a finite parameter interval. The scaling properties of the critical phase fall into four distinct universality classes, The isotropic limit of the model describes the extensively studied Harper equation. The renormalization approach provides a new method for determining energies and transition thresholds with extremely high precision,
引用
收藏
页码:212 / 233
页数:22
相关论文
共 50 条
  • [41] A QUANTUM ANALOG TO THE CLASSICAL QUASI-PERIODIC MOTION - COMMENT
    MUKAMEL, S
    JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (09): : 5843 - 5844
  • [42] ON QUANTUM STABILITY FOR SYSTEMS UNDER QUASI-PERIODIC PERTURBATIONS
    SEGUNDO, JAB
    HEY, H
    WRESZINSKI, WF
    JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (5-6) : 1479 - 1493
  • [44] Terahertz quantum cascade lasers with quasi-periodic resonators
    Mahler, Lukas
    Tredicucci, Alessandro
    Green, Richard P.
    Beltram, Fabio
    Walther, Christoph
    Faist, Jerome
    Beere, Harvey E.
    Ritchie, David A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (06): : 2176 - 2178
  • [45] Electrochemically assembled quasi-periodic quantum dot arrays
    Bandyopadhyay, S
    Miller, AE
    Chang, HC
    Banerjee, G
    Yuzhakov, V
    Yue, DF
    Ricker, RE
    Jones, S
    Eastman, JA
    Baugher, E
    Chandrasekhar, M
    NANOTECHNOLOGY, 1996, 7 (04) : 360 - 371
  • [46] PERIODIC AND QUASI-PERIODIC CRYSTALS
    GRATIAS, D
    CAHN, JW
    SCRIPTA METALLURGICA, 1986, 20 (09): : 1193 - 1197
  • [47] A QUANTUM ANALOG TO THE CLASSICAL QUASI-PERIODIC MOTION - REPLY
    HOSE, G
    TAYLOR, HS
    JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (09): : 5845 - 5846
  • [48] THE CONSTRUCTION OF QUASI-PERIODIC SOLUTIONS OF QUASI-PERIODIC FORCED SCHRODINGER EQUATION
    Jiao, Lei
    Wang, Yiqian
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1585 - 1606
  • [49] Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing
    Zhang, Min
    Si, Jianguo
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (22) : 2185 - 2215
  • [50] QUASI-PERIODIC SOLUTIONS OF GENERALIZED BOUSSINESQ EQUATION WITH QUASI-PERIODIC FORCING
    Shi, Yanling
    Xu, Junxiang
    Xu, Xindong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (06): : 2501 - 2519