PERMUTATION-GROUPS WITHOUT EXPONENTIALLY MANY ORBITS ON THE POWER SET

被引:15
作者
BABAI, L
PYBER, L
机构
[1] UNIV CHICAGO, CHICAGO, IL 60637 USA
[2] HUNGARIAN ACAD SCI, INST MATH, H-1053 BUDAPEST, HUNGARY
关键词
D O I
10.1016/0097-3165(94)90056-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if a permutation group G of degree n has no alternating composition factors of degree greater than t then G has at least 2cn/t orbits on the power set for some constant c > 0. This is best possible apart from the value of c. The proof is elementary. (C) 1994 Academic Press. Inc.
引用
收藏
页码:160 / 168
页数:9
相关论文
共 18 条