LEVEL-SPACING DISTRIBUTION OF THE HARMONIC-OSCILLATOR

被引:0
作者
LIAO, JZ [1 ]
机构
[1] SICHUAN UNIV, DEPT PHYS, CHENGDU 610064, PEOPLES R CHINA
来源
PHYSICAL REVIEW A | 1994年 / 49卷 / 01期
关键词
D O I
10.1103/PhysRevA.49.48
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper the nearest neighbor level-spacing distributins P(s) of the two-dimensional harmonic oscillator for which the energy contours are flat in the action space are calculated. It is found that P(s) for a given level group on an energy contour is not peaked about a nonzero value of s regardless of whether the oscillator frequency ratios are irrational or rational. The precise form of P(s) is a delta function independent of the arithmetic nature of the frequency ratios. We propose another method Of constructing P(s) in which many sets of levels are taken as a whole. Using this;method, some surprising distributions, such as Gaussian orthogonal ensemble-like, Poisson-like, and unit-step-function-like distributions, are exhibited for some sets of levels far away from the scaled energy contours of the harmonic oscillator.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
[41]   CONTACT SYMMETRIES OF THE HARMONIC-OSCILLATOR [J].
SCHWARZ, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (05) :L133-L135
[42]   THE NONSINGULAR SPIKED HARMONIC-OSCILLATOR [J].
ESTEVEZBRETON, ES ;
ESTEVEZBRETON, GA .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (02) :437-440
[43]   ADELIC MODEL OF HARMONIC-OSCILLATOR [J].
DRAGOVICH, B .
THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 101 (03) :1404-1412
[44]   DYNAMIC SUPERSYMMETRIES OF THE HARMONIC-OSCILLATOR [J].
BECKERS, J ;
HUSSIN, V .
PHYSICS LETTERS A, 1986, 118 (07) :319-321
[45]   HARMONIC-OSCILLATOR WITH VARIABLE MASS [J].
LEACH, PGL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (14) :3261-3269
[46]   EIGENVALUES OF THE ROTATING HARMONIC-OSCILLATOR [J].
FLESSAS, GP .
PHYSICS LETTERS A, 1979, 71 (04) :315-316
[47]   A PHASE EFFECT IN THE HARMONIC-OSCILLATOR [J].
ROHRLICH, D .
PHYSICS LETTERS A, 1988, 128 (6-7) :307-308
[48]   FEYNMAN FORMULA FOR A HARMONIC-OSCILLATOR [J].
DURU, IH .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1984, 23 (06) :567-568
[49]   HARMONIC-OSCILLATOR PHASE OPERATORS [J].
LEARNER, EC .
NUOVO CIMENTO B, 1968, 56 (01) :183-&
[50]   HARMONIC-OSCILLATOR WITH COMPLEX FREQUENCY [J].
JANNUSSIS, A ;
SKURAS, E .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 94 (01) :29-36