LEVEL-SPACING DISTRIBUTION OF THE HARMONIC-OSCILLATOR

被引:0
作者
LIAO, JZ [1 ]
机构
[1] SICHUAN UNIV, DEPT PHYS, CHENGDU 610064, PEOPLES R CHINA
来源
PHYSICAL REVIEW A | 1994年 / 49卷 / 01期
关键词
D O I
10.1103/PhysRevA.49.48
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper the nearest neighbor level-spacing distributins P(s) of the two-dimensional harmonic oscillator for which the energy contours are flat in the action space are calculated. It is found that P(s) for a given level group on an energy contour is not peaked about a nonzero value of s regardless of whether the oscillator frequency ratios are irrational or rational. The precise form of P(s) is a delta function independent of the arithmetic nature of the frequency ratios. We propose another method Of constructing P(s) in which many sets of levels are taken as a whole. Using this;method, some surprising distributions, such as Gaussian orthogonal ensemble-like, Poisson-like, and unit-step-function-like distributions, are exhibited for some sets of levels far away from the scaled energy contours of the harmonic oscillator.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
[31]   SLIDING FRICTION AND THE HARMONIC-OSCILLATOR [J].
BARRATT, C ;
STROBEL, GL .
AMERICAN JOURNAL OF PHYSICS, 1981, 49 (05) :500-501
[32]   HARMONIC-OSCILLATOR IN STOCHASTIC ELECTRODYNAMICS [J].
SANTOS, E .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1974, 19 (01) :57-89
[33]   IDENTITY FOR HARMONIC-OSCILLATOR BRACKETS [J].
RAO, KS .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1985, 24 (01) :93-97
[34]   DIFFERENCE ANALOGS OF THE HARMONIC-OSCILLATOR [J].
ATAKISHIEV, NM ;
SUSLOV, SK .
THEORETICAL AND MATHEMATICAL PHYSICS, 1990, 85 (01) :1055-1062
[35]   ANISOTROPIC HARMONIC-OSCILLATOR GROUP [J].
KING, GM .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1974, 75 (MAR) :235-248
[36]   AN EXOTIC HARMONIC-OSCILLATOR - COMMENT [J].
DOYLE, WT .
AMERICAN JOURNAL OF PHYSICS, 1991, 59 (04) :373-374
[37]   EXPONENTIAL PERTURBATIONS OF THE HARMONIC-OSCILLATOR [J].
MAIOLI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) :1952-1958
[38]   PROBABILITY OPERATOR OF A HARMONIC-OSCILLATOR [J].
BASU, S .
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1982, 25 (10) :89-93
[39]   ON THE SYMMETRIES AND INVARIANTS OF THE HARMONIC-OSCILLATOR [J].
GORDON, TJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (02) :183-189
[40]   HARMONIC-OSCILLATOR IN EXPANDING UNIVERSES [J].
LEMOS, NA ;
NATIVIDADE, CP .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1987, 99 (02) :211-225