LEVEL-SPACING DISTRIBUTION OF THE HARMONIC-OSCILLATOR

被引:0
作者
LIAO, JZ [1 ]
机构
[1] SICHUAN UNIV, DEPT PHYS, CHENGDU 610064, PEOPLES R CHINA
来源
PHYSICAL REVIEW A | 1994年 / 49卷 / 01期
关键词
D O I
10.1103/PhysRevA.49.48
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper the nearest neighbor level-spacing distributins P(s) of the two-dimensional harmonic oscillator for which the energy contours are flat in the action space are calculated. It is found that P(s) for a given level group on an energy contour is not peaked about a nonzero value of s regardless of whether the oscillator frequency ratios are irrational or rational. The precise form of P(s) is a delta function independent of the arithmetic nature of the frequency ratios. We propose another method Of constructing P(s) in which many sets of levels are taken as a whole. Using this;method, some surprising distributions, such as Gaussian orthogonal ensemble-like, Poisson-like, and unit-step-function-like distributions, are exhibited for some sets of levels far away from the scaled energy contours of the harmonic oscillator.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
[21]   PREDISSOCIATION OF HARMONIC-OSCILLATOR [J].
SINK, ML ;
BANDRAUK, AD .
CHEMICAL PHYSICS LETTERS, 1977, 49 (03) :508-511
[22]   LEVEL-SPACING DISTRIBUTIONS AND THE AIRY KERNEL [J].
TRACY, CA ;
WIDOM, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (01) :151-174
[23]   LEVEL-SPACING DISTRIBUTION IN THE TIGHT-BINDING MODEL OF FCC CLUSTERS [J].
MANSIKKAAHO, J ;
MANNINEN, M ;
HAMMAREN, E .
PHYSICAL REVIEW B, 1993, 47 (16) :10675-10684
[24]   Refined evaluation of the level-spacing distribution of symplectic ensembles: Moments and implications [J].
Gebremariam, H ;
Einstein, TL .
PHYSICAL REVIEW E, 2006, 73 (01)
[25]   SUPERRADIANT STATES IN 2-LEVEL AND HARMONIC-OSCILLATOR SYSTEMS [J].
ZAKOWICZ, W .
LETTERE AL NUOVO CIMENTO, 1971, 2 (03) :99-&
[26]   LEVEL-SPACING DISTRIBUTIONS AND THE AIRY KERNEL [J].
TRACY, CA ;
WIDOM, H .
PHYSICS LETTERS B, 1993, 305 (1-2) :115-118
[27]   HARMONIC-OSCILLATOR TRANSFORMATION COEFFICIENTS [J].
DAVIES, KTR ;
KRIEGER, SJ .
CANADIAN JOURNAL OF PHYSICS, 1991, 69 (01) :62-69
[28]   THE STATISTICAL DISTRIBUTION FUNCTION OF THE Q-DEFORMED HARMONIC-OSCILLATOR [J].
GE, ML ;
SU, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (13) :L721-L723
[29]   PLANCK DISTRIBUTION IN A CLASSICAL NONLINEAR COUPLED HARMONIC-OSCILLATOR SYSTEM [J].
WALLACE, J .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1974, B 22 (01) :22-42
[30]   CALCULATIONS OF HARMONIC-OSCILLATOR BRACKETS [J].
FENG, DH ;
TAMURA, T .
COMPUTER PHYSICS COMMUNICATIONS, 1975, 10 (02) :87-97