LEVEL-SPACING DISTRIBUTION OF THE HARMONIC-OSCILLATOR

被引:0
|
作者
LIAO, JZ [1 ]
机构
[1] SICHUAN UNIV, DEPT PHYS, CHENGDU 610064, PEOPLES R CHINA
来源
PHYSICAL REVIEW A | 1994年 / 49卷 / 01期
关键词
D O I
10.1103/PhysRevA.49.48
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper the nearest neighbor level-spacing distributins P(s) of the two-dimensional harmonic oscillator for which the energy contours are flat in the action space are calculated. It is found that P(s) for a given level group on an energy contour is not peaked about a nonzero value of s regardless of whether the oscillator frequency ratios are irrational or rational. The precise form of P(s) is a delta function independent of the arithmetic nature of the frequency ratios. We propose another method Of constructing P(s) in which many sets of levels are taken as a whole. Using this;method, some surprising distributions, such as Gaussian orthogonal ensemble-like, Poisson-like, and unit-step-function-like distributions, are exhibited for some sets of levels far away from the scaled energy contours of the harmonic oscillator.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
  • [1] THE HARMONIC-OSCILLATOR ENERGY-LEVEL SPACING FOR NEUTRONS AND PROTONS IN NUCLEI
    LALAZISSIS, GA
    PANOS, CP
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1992, 344 (01): : 17 - 19
  • [2] LEVEL-SPACING DISTRIBUTION OF A SINGULAR BILLIARD
    SHIGEHARA, T
    YOSHINAGA, N
    CHEON, T
    MIZUSAKI, T
    PHYSICAL REVIEW E, 1993, 47 (06) : R3822 - R3825
  • [3] Level-spacing distribution of a fractal matrix
    Katsanos, DE
    Evangelou, SN
    PHYSICS LETTERS A, 2001, 289 (4-5) : 183 - 187
  • [4] Diagonalization of multi-oscillator models and level-spacing distributions
    Bai, ZM
    Liu, JS
    Ge, ML
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 34 (02) : 327 - 336
  • [5] THE DEPENDENCE OF THE HARMONIC-OSCILLATOR ENERGY-LEVEL SPACING ON THE MASS-NUMBER OF NUCLEI
    DASKALOYANNIS, CB
    GRYPEOS, ME
    KOUTROULOS, CG
    MASSEN, SE
    SALOUPIS, DS
    PHYSICS LETTERS B, 1983, 121 (2-3) : 91 - 95
  • [6] LEVEL SPACINGS FOR HARMONIC-OSCILLATOR SYSTEMS
    PANDEY, A
    RAMASWAMY, R
    PHYSICAL REVIEW A, 1991, 43 (08): : 4237 - 4243
  • [7] Critical level-spacing distribution for general boundary conditions
    Evangelou, SN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (02): : 363 - 369
  • [8] A HARMONIC-OSCILLATOR
    POSPELOV, AN
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1989, 44 (03) : 142 - 143
  • [9] Extension of level-spacing universality
    Brezin, E
    Hikami, S
    PHYSICAL REVIEW E, 1997, 56 (01): : 264 - 269
  • [10] Level-spacing distribution of localized phases induced by quasiperiodic potentials
    Yang, Chao
    Wang, Yucheng
    PHYSICAL REVIEW B, 2024, 109 (21)