共 5 条
Miniversal deformations of chains of linear mappings
被引:0
|作者:
Gaiduk, T. N.
[1
]
Sergeichuk, V. V.
[1
]
Zharko, N. A.
[2
]
机构:
[1] Inst Math, Tereshchenkivska 3, Kiev, Ukraine
[2] Kiev Natl Univ, Mech Math Fac, Kiev, Ukraine
来源:
ALGEBRA & DISCRETE MATHEMATICS
|
2005年
/
01期
关键词:
Parametric matrices;
Quivers;
Miniversal deformations;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29-43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings V1-V2- ... V-t, where all V-i, are complex or real vector spaces and each line denotes or -> or <-.
引用
收藏
页码:47 / 61
页数:15
相关论文