SELF-ADJOINTNESS OF SCHRODINGER OPERATOR AND WIENER-INTEGRAL

被引:3
作者
GAYSINSKY, MD
GOLDSTEIN, MS
机构
[1] BEN GURION UNIV NEGEV,DEPT MATH,IL-84105 BEER SHEVA,ISRAEL
[2] VI LENIN STATE UNIV,DEPT MATH,TASHKENT,UZBEKISTAN,USSR
关键词
MSC:; primary; 47F05; secondary; 35P05;
D O I
10.1007/BF01203123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove theorems of self-adjointness of the operator H = -DELTA + V and its powers H(p). The proof is based on the analysis of Wiener's integrals.
引用
收藏
页码:973 / 990
页数:18
相关论文
共 14 条
[1]  
CARLEMAN T, 1934, ARC MATH AST FYS B, V24, P11
[2]  
Chernoff PR., 1973, J FUNCT ANAL, V12, P401, DOI 10.1016/0022-1236(73)90003-7
[4]   COMMUTATORS AND SELF-ADJOINTNESS OF HAMILTONIAN OPERATORS [J].
FARIS, WG ;
LAVINE, RB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (01) :39-48
[5]  
FROLICH J, UNBOUNDED SYMMETRIC
[6]   REDUCED DENSITY MATRICES OF QUANTUM GASES .I. LIMIT OF INFINITE VOLUME [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :238-&
[7]   LIMIT-THEOREM FOR THE DISTRIBUTION OF EIGENVALUES OF THE OPERATOR OF ENERGY [J].
GOLDSTEIN, MS .
JOURNAL OF STATISTICAL PHYSICS, 1985, 40 (1-2) :329-360
[8]  
ISMAGILOV RS, 1962, DOKL AKAD NAUK SSSR+, V142, P1239
[9]   SCHRODINGER OPERATORS WITH SINGULAR POTENTIALS [J].
KATO, T .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (1-2) :135-148
[10]  
OROCHKO JB, 1983, IZV AN USSR M, V47, P298