NUMERICAL CRITICAL VALUE OF THE GENERALIZED PARABOLIC MEMS EQUATION

被引:0
|
作者
Nabongo, Diabate [1 ]
机构
[1] Univ Alassane Ouattara, UFR SED, Equipe Rech Modelisat Math & Simulat Informat, 16 BP 372, Abidjan 16, Cote Ivoire
来源
JOURNAL OF MATHEMATICAL ANALYSIS | 2016年 / 7卷 / 04期
关键词
semidiscretizations; parabolic equation; semidiscrete quenching time; convergence; electrostatic MEMS; critical value;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the semidiscrete approximation for the following initial-boundary value problem -v(t)(x,t) = -Dv(xx)(x,t) + lambda f(x)(L + v(x,t))(-P), -l < x < l, t > 0, v(-l, t) = 0, v(l, t) = 0, t > 0, v(x, 0) = v(0)(x) = 0, -l <= x <= l, where D > 0, lambda > 0, p > 1 and f(x) is an element of C-1([-l, l]), symmetric and nondecreasing on the interval (-l, 0), 0 < f(x) < 1, f(-l) = 0, f(l) = 0 and 1 = 1/2. We determine the critical value of a semidiscrete form of above problem. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally, we give some numerical experiments to illustrate our analysis.
引用
收藏
页码:45 / 63
页数:19
相关论文
共 50 条