The word problem in Hanoi Towers groups

被引:0
作者
Bondarenko, Ievgen [1 ]
机构
[1] Natl Tams Shevchenko Univ Kyiv, Mech & Math Fac, Dept Algebra & Math Log, Vul Volodymyrska 64, UA-11033 Kiev, Ukraine
来源
ALGEBRA & DISCRETE MATHEMATICS | 2014年 / 17卷 / 02期
关键词
the Tower of Hanoi game; automaton group; word problem; complexity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the elements of the Hanoi Towers groups H-m, have depth bounded from above by a poly-logarithmic function 0(log(m-2) n), where a is the length or an element. Therefore the word problem in groups H-m is solvable in subexponential tirne exp(O(log(m-2)n)).
引用
收藏
页码:248 / 255
页数:8
相关论文
共 9 条
  • [1] Growth of Schreier graphs of automaton groups
    Bondarenko, Ievgen V.
    [J]. MATHEMATISCHE ANNALEN, 2012, 354 (02) : 765 - 785
  • [2] Asymptotic aspects of Schreier graphs and Hanoi Towers Groups
    Grigorchuk, R
    Sunik, Z
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (08) : 545 - 550
  • [3] GRIGORCHUK R, 2007, LONDON MATH SOC LECT, V339, P36
  • [4] Grigorchuk R. I., 2000, P STEKLOV I MATH+, V231, P128
  • [5] Hinz A., 1989, LENSEIGNEMENT MATH M, V35, P289, DOI DOI 10.5169/SEALS-57378
  • [6] On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem
    Klavzar, S
    Milutinovic, U
    Petr, C
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 141 - 157
  • [7] Muntyan Y., 2008, AUTOMGRP GAP PACKAGE
  • [8] Nekrashevych V. V, 2005, MATH SURVEYS MONOGRA, V117
  • [9] Szegedy M, 1999, LECT NOTES COMPUT SC, V1563, P356