On the homogeneous boundary value problem for the heat equation in the degenerate domain

被引:0
|
作者
Kosmakova, M. T. [1 ]
Mizambaeva, M. T. [1 ]
机构
[1] Karaganda State Univ, Karaganda, Kazakhstan
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the boundary problem of the theory of heat conduction in a domain with a moving boundary and the corresponding singular integral equation of Volterra, to which it is reduced. Feature of this integral equation is expressed in the fact that the inhomogeneous equation can not be solved by successive approximations. We solve the homogeneous equation corresponding to linear law of motion of the boundary alpha (t) = t. In the result we obtain an Eigen function of a singular integral equation under consideration and the nontrivial solution of the homogeneous boundary value problem.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [21] FIRST BOUNDARY VALUE PROBLEM FOR ELLIPTIC EQUATIONS WHICH DEGENERATE AT DOMAIN BOUNDARY
    NARCHAEV, A
    DOKLADY AKADEMII NAUK SSSR, 1964, 156 (01): : 28 - &
  • [22] On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain
    Ramazanov, M., I
    Gulmanov, N. K.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (02): : 241 - 252
  • [23] NONTRIVIAL HOMOGENEOUS BOUNDARY-VALUE PROBLEM OF THE LAPLACE EQUATION
    CAP, FF
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (10): : 284 - 284
  • [24] Inverse problem for a weakly degenerate parabolic equation in a domain with free boundary
    Ivanchov M.I.
    Hryntsiv N.M.
    Journal of Mathematical Sciences, 2010, 167 (1) : 16 - 29
  • [25] A nonlinear boundary-value problem for a degenerate parabolic pseudodifferential equation
    Egorov Y.V.
    Chuong N.M.
    Tuan D.A.
    Journal of Mathematical Sciences, 2011, 179 (4) : 461 - 474
  • [26] On a degenerate boundary value problem for the porous medium equation in spherical coordinates
    Kazakov, A. L.
    Kuznetsov, P. A.
    Spevak, L. F.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (01): : 119 - 129
  • [27] Boundary Value Problem For A Degenerate Equation Of Odd Order With Variable Coefficients
    Yusuphanovich, Irgashev Bahrom
    Xoshimovna, Pulatova Xalima
    Qizi, Meliqo'ziyeva Dilshoda Muxtorjon
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 541 - 549
  • [28] Boundary value problem for a degenerate equation with a Riemann-Liouville operator
    Irgashev, Bakhrom Yu.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2023, 14 (05): : 511 - 517
  • [29] The Mixed Initial-Boundary Value Problem for Degenerate Hyperbolic Equation
    Kakharman, Nurbek
    EXTENDED ABSTRACTS MWCAPDE 2023, 2024, 1 : 145 - 150
  • [30] On one homogeneous problem for the heat equation in an infinite angular domain
    Amangalieva, M. M.
    Dzhenaliev, M. T.
    Kosmakova, M. T.
    Ramazanov, M. I.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) : 982 - 995