On the homogeneous boundary value problem for the heat equation in the degenerate domain

被引:0
|
作者
Kosmakova, M. T. [1 ]
Mizambaeva, M. T. [1 ]
机构
[1] Karaganda State Univ, Karaganda, Kazakhstan
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the boundary problem of the theory of heat conduction in a domain with a moving boundary and the corresponding singular integral equation of Volterra, to which it is reduced. Feature of this integral equation is expressed in the fact that the inhomogeneous equation can not be solved by successive approximations. We solve the homogeneous equation corresponding to linear law of motion of the boundary alpha (t) = t. In the result we obtain an Eigen function of a singular integral equation under consideration and the nontrivial solution of the homogeneous boundary value problem.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [1] On the boundary value problem for the heat equation in the degenerating domain
    Jenaliyev, M.
    Ramazanov, M.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789
  • [2] INVERSE PROBLEM FOR THE STRONGLY DEGENERATE HEAT EQUATION IN A DOMAIN WITH FREE BOUNDARY
    Hryntsiv, N. M.
    Ivanchov, M. I.
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (01) : 30 - 49
  • [3] Inverse problem for the strongly degenerate heat equation in a domain with free boundary
    N. M. Hryntsiv
    M. I. Ivanchov
    Ukrainian Mathematical Journal, 2009, 61 : 30 - 49
  • [4] On the non-uniqueness of solution to the homogeneous boundary value problem for the heat conduction equation in an angular domain
    Kosmakova, M. T.
    Ramazanov, M. I.
    Tokesheva, A. S.
    Khairkulova, A. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2016, 84 (04): : 80 - 87
  • [5] The first boundary value problem for the fractional diffusion equation in a degenerate angular domain
    Ramazanov, M. I.
    Pskhu, A. V.
    Omarov, M. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2024, 113 (01): : 162 - 173
  • [6] Initial-boundary value problem for a fractional type degenerate heat equation
    Huaroto, Gerardo
    Neves, Wladimir
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (06): : 1199 - 1231
  • [7] On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain
    Kal'menov, T. Sh
    Tokmagambetov, N. E.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (06) : 1023 - 1028
  • [8] Domain sampling methods for an inverse boundary value problem of the heat equation
    Sun, Shiwei
    Nakamura, Gen
    Wang, Haibing
    INVERSE PROBLEMS, 2024, 40 (12)
  • [9] On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain
    T. Sh. Kal’menov
    N. E. Tokmagambetov
    Siberian Mathematical Journal, 2013, 54 : 1023 - 1028
  • [10] Very Weak Solutions to the Boundary-Value Problem of the Homogeneous Heat Equation
    Nowakowski, Bernard
    Zajaczkowski, Wojciech M.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (02): : 129 - 153