Static Anomaly Detection Framework for Android-based Mobile Phones

被引:0
作者
Ji, Xiaobo [1 ]
Zeng, Fan [1 ]
Ye, Bangxian [2 ]
机构
[1] Third Mil Med Univ, Duping Hosp, Research Inst Field Surg, Dept Informat, Chongqing, Peoples R China
[2] Fujian Normal Univ, Fac Software, Fuzhou 350007, Peoples R China
来源
INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS | 2016年 / 10卷 / 12期
关键词
Android-based mobile devices; Support vector machine; Cloud computing; Static anomaly detection;
D O I
10.14257/ijsia.2016.10.12.20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of wireless communication, mobile network, and embedded system technologies, android-based mobile devices show a number of useful functions and then they are attacked by hackers for obtaining some useful information. In this paper, an efficient static anomaly detection framework is shown for android-based mobile phones to improve their security. The proposed framework uses support vector machine to perform the anomaly detection and exploits the cloud computing platform to reduce the impact on android-based mobile phones. Experimental results show that the proposed framework is better than existing anomaly detection frameworks in terms of the detection precision and the detection time.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 16 条
  • [11] Mansfield-Devine Steve, 2012, Network Security, V2012, P5, DOI 10.1016/S1353-4858(12)70092-2
  • [12] Mining permission patterns for contrasting clean and malicious android applications
    Moonsamy, Veelasha
    Rong, Jia
    Liu, Shaowu
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 36 : 122 - 132
  • [13] Evaluation of machine learning classifiers for mobile malware detection
    Narudin, Fairuz Amalina
    Feizollah, Ali
    Anuar, Nor Badrul
    Gani, Abdullah
    [J]. SOFT COMPUTING, 2016, 20 (01) : 343 - 357
  • [14] Detecting mobile malware threats to homeland security through static analysis
    Seo, Seung-Hyun
    Gupta, Aditi
    Sallam, Asmaa Mohamed
    Bertino, Elisa
    Yim, Kangbin
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2014, 38 : 43 - 53
  • [15] Spreitzenbarth M., 2013, P 28 ANN ACM S APPL, P1808, DOI DOI 10.1145/2480362.2480701
  • [16] Dissecting Android Malware: Characterization and Evolution
    Zhou, Yajin
    Jiang, Xuxian
    [J]. 2012 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2012, : 95 - 109