MULTILEVEL HIERARCHICAL PRECONDITIONERS FOR BOUNDARY-ELEMENT SYSTEMS

被引:15
作者
BARRA, LPS
COUTINHO, ALGA
TELLES, JCF
MANSUR, WJ
机构
[1] Department of Civil Engineering, COPPE/Federal University of Rio de Janeiro, 21945 Rio de Janeiro
关键词
BOUNDARY ELEMENT METHOD; GMRES; HIERARCHICAL PRECONDITIONER;
D O I
10.1016/0955-7997(93)90004-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on previous experiences with multi-level hierarchical preconditioners (MLHPs) for the solution of finite element equations, the present work extends the ideas to the boundary element technique. Since the system matrix is dense and non-symmetric, the MLHP are implemented within the generalized minimal residual (GMRES) algorithm.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 17 条
[1]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[2]  
BANK RE, 1989, 2ND P INT S DOM DEC, P140
[3]   ITERATIVE SOLUTION OF BEM EQUATIONS BY GMRES ALGORITHM [J].
BARRA, LPS ;
COUTINHO, ALGA ;
MANSUR, WJ ;
TELLES, JCF .
COMPUTERS & STRUCTURES, 1992, 44 (06) :1249-1253
[4]  
BARRA LPS, 1992, BEM 14, V1, P643
[5]   MULTILEVEL MATRIX MULTIPLICATION AND FAST SOLUTION OF INTEGRAL-EQUATIONS [J].
BRANDT, A ;
LUBRECHT, AA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (02) :348-370
[6]  
Brebbia C.A., 1984, BOUNDARY ELEMENT TEC
[7]  
COUTINHO ALG, 1991, DEC ASME WINT ANN M
[8]  
Dongarra J. J., 1979, LINPACK USERS GUIDE
[9]  
Dongarra JJ, 1991, SOLVING LINEAR SYSTE
[10]   ITERATIVE SOLUTION TECHNIQUES IN BOUNDARY ELEMENT ANALYSIS [J].
KANE, JH ;
KEYES, DE ;
PRASAD, KG .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 31 (08) :1511-1536