HYSTERESIS AND SELF-ORGANIZED CRITICALITY IN THE O(N) MODEL IN THE LIMIT N -]INFINITY

被引:91
作者
DHAR, D
THOMAS, PB
机构
[1] Theor. Phys. Group, Tata Inst. of Fundamental Res., Bombay
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 19期
关键词
D O I
10.1088/0305-4470/25/19/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the response of the ferromagnetic N-vector model to a sinusoidally varying external magnetic field in the large-N limit. In all dimensions d > 2, we show that at low frequencies omega, and small amplitudes H0 of the field, the area of the hysteresis loop scales as (H0omega)1/2 with logarithmic corrections. At very high frequencies, the area varies as H02/omega. We find that for any H0 there is a dynamical phase transition separating these two frequency regimes. We determine numerically the critical frequency as a function of the field strength. In the high-frequency phase the magnetization is predominantly transverse to the external magnetic field.
引用
收藏
页码:4967 / 4984
页数:18
相关论文
共 19 条
[11]  
NOWAK U, 1990, PHYSICA B, V165, P211, DOI 10.1016/S0921-4526(90)80955-I
[12]   NONEXPONENTIAL RELAXATION OF DILUTED ANTIFERROMAGNETS [J].
NOWAK, U ;
USADEL, KD .
PHYSICAL REVIEW B, 1991, 43 (01) :851-853
[13]  
OBHUKOV SP, 1990, PHYS REV LETT, V65, P1395
[14]  
PRESS WH, 1989, NUMERICAL RECIPES
[15]   MAGNETIC HYSTERESIS IN 2 MODEL SPIN SYSTEMS [J].
RAO, M ;
KRISHNAMURTHY, HR ;
PANDIT, R .
PHYSICAL REVIEW B, 1990, 42 (01) :856-884
[16]   HYSTERESIS IN MODEL SPIN SYSTEMS [J].
RAO, M ;
KRISHNAMURTHY, HR ;
PANDIT, R .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (45) :9061-9066
[17]   CELL-DYNAMIC SIMULATION OF MAGNETIC HYSTERESIS IN THE 2-DIMENSIONAL ISING SYSTEM [J].
SENGUPTA, S ;
MARATHE, Y ;
PURI, S .
PHYSICAL REVIEW B, 1992, 45 (14) :7828-7831
[18]   1ST-PASSAGE TIMES AND HYSTERESIS IN MULTIVARIABLE STOCHASTIC-PROCESSES - THE 2-MODE RING LASER [J].
SHENOY, SR ;
AGARWAL, GS .
PHYSICAL REVIEW A, 1984, 29 (03) :1315-1325
[19]   DYNAMIC PHASE-TRANSITION IN THE KINETIC ISING-MODEL UNDER A TIME-DEPENDENT OSCILLATING FIELD [J].
TOME, T ;
DEOLIVEIRA, MJ .
PHYSICAL REVIEW A, 1990, 41 (08) :4251-4254