TOPOLOGICAL SOLITONS IN 1+2 DIMENSIONS WITH TIME-DEPENDENT COEFFICIENTS

被引:13
作者
Sturdevant, B. [1 ]
Lott, D. A. [2 ,3 ]
Biswas, A. [4 ]
机构
[1] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Dover, DE 19901 USA
[2] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Appl Math Res Ctr, Dept Math Sci, Dover, DE 19901 USA
[3] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Appl Math Res Ctr, Dept Biol Sci, Dover, DE 19901 USA
[4] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Dept Math Sci, Dover, DE 19901 USA
来源
PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS | 2009年 / 10卷
关键词
Compendex;
D O I
10.2528/PIERL09070804
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper obtains the topological 1-soliton solution of the nonlinear Schrodinger's equation in 1+2 dimensions, with power law nonlinearity and time-dependent coefficients. The solitary wave ansatz is used to obtain the solution. It will also be proved that the power law nonlinearity must reduce to Kerr law nonlinearity for the topological solitons to exist.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 15 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[2]   Topological 1-soliton solution of the nonlinear Schrodinger's equation with Kerr law nonlinearity in 1+2 dimensions [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (07) :2845-2847
[3]   Blow-up of the hyperbolic burgers equation [J].
Escudero, Carlos .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (02) :327-338
[4]  
Jordan P. M., PHYS D, V207, P220
[5]   OPTICAL SOLITONS WITH PARABOLIC AND DUAL-POWER LAW NONLINEARITY VIA LIE SYMMETRY ANALYSIS [J].
Khalique, C. M. ;
Biswas, A. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2009, 23 (07) :963-973
[6]   Incoherently coupled screening photovoltaic spatial solitons in biased photovoltaic photorefractive crystals [J].
Konar, S. ;
Jana, Soulnendu ;
Shwetanshumala, S. .
OPTICS COMMUNICATIONS, 2007, 273 (02) :324-333
[7]   Induced focusing and all optical switching in cubic quintic nonlinear media [J].
Konar, S ;
Jana, S ;
Mishra, M .
OPTICS COMMUNICATIONS, 2005, 255 (1-3) :114-129
[8]   Seven common errors in finding exact solutions of nonlinear differential equations [J].
Kudryashov, Nikolai A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (9-10) :3507-3529
[9]   Be careful with the Exp-function method [J].
Kudryashov, Nikolai A. ;
Loguinova, Nadejda B. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1881-1890
[10]   A numerical study of optical soliton-like structures resulting from the nonlinear Schrodinger's equation with square-root law nonlinearity [J].
Lott, Dawn A. ;
Henriquez, Auris ;
Sturdevant, Benjamin J. M. ;
Biswas, Anjan .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) :319-326