HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC FUNCTION DEFINED BY GEBERALIZED DERIVATIVE OPERATOR

被引:4
作者
Al-Abbadi, Ma 'moun Harayzeh [1 ]
Darus, Maslina [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor D Ehsa, Malaysia
来源
TAMKANG JOURNAL OF MATHEMATICS | 2012年 / 43卷 / 03期
关键词
Analytic function; univalent function; Fekete-Szego functional; Hankel determinant; convex and starlike functions; positive real functions; derivative operator;
D O I
10.5556/j.tkjm.43.2012.445-453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors in [1] have recently introduced a new generalised derivatives operator mu(lambda 1,lambda 2) (n,m) which generalised many well-known operators studied earlier by many different authors. By making use of the generalised derivative operator mu(n,m)(lambda 1,lambda 2) the authors derive the class of function denoted by H-lambda 1,lambda 2(n,m) which contain normalised analytic univalent functions f defined on the open unit disc U = {z is an element of C : vertical bar z vertical bar < 1} and satisfy Re (mu(n,m)(lambda 1,lambda 2) f(z))' > 0, (z is an element of U). This paper focuses on attaining sharp upper bound for the functional vertical bar a(2)a(4) - a(3)(2)vertical bar for functions f (z)= z + Sigma(infinity)(k=2) a(k) z(k) belonging to the class H-lambda 1,lambda 2(n,m).
引用
收藏
页码:445 / 453
页数:9
相关论文
共 23 条
  • [1] Al-Abbadi M. H., 2009, ACTA U APULENSIS, V20, P265
  • [2] Al-Kasasbeh F., 2009, EUROPEAN J SCI RES, V28, P124
  • [3] Al-Oboudi F.M., 2004, INT J MATH MATH SCI, V2004, P172525, DOI [DOI 10.1155/S0161171204108090, 10.1155/S0161171204108090]
  • [4] Al-Refai Oqlah, 2009, EUR J SCI RES, V28, P234
  • [5] Al-Shaqsi K., 2008, INT J COMP MATH SCI, V2, P75
  • [6] Al-Shaqsi K., 2009, J ANAL APPL, V7, P53
  • [7] A New Subclass of Salagean-Type Harmonic Univalent Functions
    Al-Shaqsi, Khalifa
    Darus, Maslina
    Fadipe-Joseph, Olubunmi Abidemi
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [8] Darus M., 2010, FAR E J MATH SCI, V40, P93
  • [9] The Hankel determinant of exponential polynomials
    Ehrenborg, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (06) : 557 - 560
  • [10] Fekete M., 1933, J LOND MATH SOC, V8, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]