List injective coloring of a class of planar graphs without short cycles
被引:8
作者:
Bu, Yuehua
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R ChinaZhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
Bu, Yuehua
[1
,2
]
Huang, Chaoyuan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R ChinaZhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
Huang, Chaoyuan
[1
]
机构:
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R China
Planar graph;
girth;
injective coloring;
list coloring;
D O I:
10.1142/S1793830918500684
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
An injective k-coloring of a graph G is a mapping c: V (G) -> {1, 2,..., k} such that c(u) does not satisfy c(v) whenever u, v have a common neighbor in G. A list assignment of a graph G is a mapping L that assigns a color list L(v) to each vertex nu V (G). Given a list assignment L of G, an injective coloring phi of G is called an injective L-coloring if phi(nu) is an element of L(nu) for every nu is an element of V (G). In this paper, we show that if G is a planar graph with girth g >= 5, then chi(l)(i) (G) <= Delta(G) + Delta(G) >= 11.
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Shihezi Univ, Normal Coll, Shihezi 832003, Xinjiang, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Li, Rui
;
Xu, Baogang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Shihezi Univ, Normal Coll, Shihezi 832003, Xinjiang, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Li, Rui
;
Xu, Baogang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China