GLOBAL HARMONIC FUNCTION THEORY IN CONTEXT OF DIRICHLET SPACES

被引:0
作者
DOUGHERTY, E
机构
[1] Fairleigh Dickinson University, Rutherford
关键词
D O I
10.1016/0022-247X(78)90062-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:606 / 653
页数:48
相关论文
共 50 条
[21]   On the Growth of the Dirichlet Integral for Some Function Spaces [J].
Rauno Aulaskari ;
Shamil Makhmutov .
Computational Methods and Function Theory, 2008, 8 (2) :475-482
[22]   DIRICHLET SPACES - PRINCIPLES, GREEN-FUNCTION [J].
ANCONA, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1975, 54 (01) :75-124
[23]   Towards a theory of context spaces [J].
Padovitz, A ;
Loke, SW ;
Zaslavsky, A .
SECOND IEEE ANNUAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS, PROCEEDINGS, 2004, :38-42
[24]   BANACH SPACES OF BOUNDED DIRICHLET FINITE HARMONIC FUNCTIONS ON RIEMANN SURFACES [J].
Nakai, Mitsuru .
KODAI MATHEMATICAL JOURNAL, 2013, 36 (01) :15-37
[25]   The dirichlet problem in weighted spaces and some uniqueness theorems for harmonic functions [J].
Airapetyan G.M. .
Journal of Mathematical Sciences, 2011, 173 (2) :123-149
[26]   The Dirichlet problem for harmonic maps between Damek-Ricci spaces [J].
Ueno, K .
TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (04) :565-575
[27]   Schrodinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces [J].
Shen, Tianjun ;
Li, Bo .
MATHEMATICS, 2022, 10 (07)
[28]   THE DIRICHLET AND NEUMANN PROBLEMS FOR HARMONIC-FUNCTIONS IN HALF-SPACES [J].
GARDINER, SJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1981, 24 (DEC) :502-512
[29]   Time changes of local Dirichlet spaces by energy measures of harmonic functions [J].
Kajino, Naotaka .
FORUM MATHEMATICUM, 2012, 24 (02) :339-363
[30]   A MAXIMUM PRINCIPLE FOR DIRICHLET-FINITE HARMONIC FUNCTIONS ON RIEMANNIAN SPACES [J].
KWON, YK ;
SARIO, L .
CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (04) :855-&