The velocities and attenuation of seismic and acoustic waves in rocks with fluids are affected by the two most important modes of fluid/solid interaction: (1) the Biot mechanism where the fluid is forced to participate in the solid's motion by viscous friction and inertial coupling, and (2) the squirt-flow mechanism where the fluid is squeezed out of thin pores deformed by a passing wave. Traditionally, both modes have been modeled separately, with the Biot mechanism treated in a macroscopic framework, and the squirt flow examined at the individual pore level. We offer a model which treats both mechanisms as coupled processes and relates P-velocity and attenuation to macroscopic parameters: the Biot poroelastic constants, porosity, permeability, fluid compressibility and viscosity, and a newly introduced microscale parameter-a characteristic squirt-flow length. The latter is referred to as a fundamental rock property that can be determined experimentally. We show that the squirt-flow mechanism dominates the Biot mechanism and is responsible for measured large velocity dispersion and attenuation values. The model directly relates P-velocity and attenuation to measurable rock and fluid properties. Therefore, it allows one to realistically interpret velocity dispersion and/or attenuation in terms of fluid properties changes [e.g., viscosity during thermal enhanced oil recovery (EOR)], or to link seismic measurements to reservoir properties. As an example of the latter transformation, we relate permeability to attenuation and achieve good qualitative correlation with experimental data.