THE LINEAR SPECTRUM OF QUADRATIC APN FUNCTIONS

被引:0
|
作者
Gorodilova, A. A. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
来源
PRIKLADNAYA DISKRETNAYA MATEMATIKA | 2016年 / 34卷 / 04期
关键词
APN function; associated Boolean function; linear spectrum; Gold function;
D O I
10.17223/20710410/34/1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Almost perfect nonlinear (APN) functions are studied. We introduce the linear spectrum Lambda(F) = (lambda(F)(0), ..., lambda(F)(2n-1)) of a quadratic APN function F, where lambda(F)(k) equals the number of linear functions L such that vertical bar{a is an element of F-2(n) \ {0} : B-a(F) = B-a(F + L)}vertical bar = k and B-a(F) = {F(x)+F(x+a) : x is an element of F-2(n)}. We prove that lambda(F)(k) = 0 for all even k <= 2(n)-2 and for all k < (2(n)-1)/3, where F is a quadratic APN function in even number of variables n. Linear spectra for APN functions in small number of variables n = 3,4,5,6 are computed and presented. We consider APN Gold functions F(x) = x(2k+1) for (k,n) = 1 and prove that lambda(F)(2n-1) = 2(n+n/2) if n = 4t for some t and k = n/2 +/- 1, and lambda(F)(2n-1) = 2(n) otherwise.
引用
收藏
页码:5 / 16
页数:12
相关论文
共 50 条
  • [21] Kim-type APN functions are affine equivalent to Gold functions
    Benjamin Chase
    Petr Lisoněk
    Cryptography and Communications, 2021, 13 : 981 - 993
  • [22] Kim-type APN functions are affine equivalent to Gold functions
    Chase, Benjamin
    Lisonek, Petr
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (06): : 981 - 993
  • [23] On the differential equivalence of APN functions
    Anastasiya Gorodilova
    Cryptography and Communications, 2019, 11 : 793 - 813
  • [24] On the differential equivalence of APN functions
    Gorodilova, Anastasiya
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (04): : 793 - 813
  • [25] On the symmetric properties of APN functions
    Vitkup V.A.
    Journal of Applied and Industrial Mathematics, 2016, 10 (1) : 126 - 135
  • [26] Plateaudness of Kasami APN functions
    Yoshiara, Satoshi
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 47 : 11 - 32
  • [27] A divisibility criterion for exceptional APN functions
    Caullery, Florian
    TOPICS IN FINITE FIELDS, 2015, 632 : 71 - 82
  • [28] ON THE FOURIER SPECTRA OF NEW APN FUNCTIONS
    Tan, Yin
    Qu, Longjiang
    Ling, San
    Tan, Chik How
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 791 - 801
  • [29] New semifields, PN and APN functions
    Jürgen Bierbrauer
    Designs, Codes and Cryptography, 2010, 54 : 189 - 200
  • [30] New semifields, PN and APN functions
    Bierbrauer, Juergen
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 189 - 200