Research on the application of the improved genetic algorithm in the electroencephalogram-based mental workload evaluation for miners

被引:3
作者
Li Hongxia [1 ,2 ,3 ]
Di Hongxi [1 ,2 ,3 ]
Li Jian [4 ]
Tian Shuicheng [2 ,3 ]
机构
[1] Xian Univ Sci & Technol, Sch Management, Xian, Shaanxi, Peoples R China
[2] Xian Univ Sci & Technol, Sch Energy Engn, Xian, Shaanxi, Peoples R China
[3] Xian Univ Sci & Technol, Key Lab Western Mine Exploitat & Hazard Prevent, Xian, Shaanxi, Peoples R China
[4] Shanxi Prov AuditOff, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Genetic algorithm; particle swarm optimization; improved genetic algorithm; mental workload; electroencephalogram;
D O I
10.1177/1748301816649071
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Electroencephalogram is the electrical phenomena in the cerebral cortex or the scalp surface due to the electrophysiological activity of brain cells. Electroencephalogram has great theoretical and practical significance in measuring mental workload of people. More precise electroencephalographic is a precondition to study mental workload of miners. In this article, based on the actual situation of the electroencephalographic measurement of miners, the particle swarm optimization is introduced to improve the standard genetic algorithm, and put forward a combined method integrating the genetic algorithm with particle swarm optimization for achieving electroencephalogram-based measures of miners' mental workload. Moreover, the MATLAB simulation platform is used for simulation testing. Testing results prove the effectiveness of the combined method.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 25 条
  • [1] Monitoring of mental workload levels during an everyday life office-work scenario
    Cinaz, Burcu
    Arnrich, Bert
    La Marca, Roberto
    Troester, Gerhard
    [J]. PERSONAL AND UBIQUITOUS COMPUTING, 2013, 17 (02) : 229 - 239
  • [2] Cui SQ, 2014, PR ELECTROMAGN RES S, P1364
  • [3] Dong YJ, 2013, SCI TECHNOLOGY ENG, V13, P3305
  • [4] Brain-computer inyerface in multimedia communication
    Ebrahimi, T
    Vesin, JM
    Garcia, G
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2003, 20 (01) : 14 - 24
  • [5] The EEG indicators of mental workload in pilots during the dynamic flight simulation on the human centrifuge
    Evstigneev, A. L.
    Filipenkov, S. N.
    Klochkov, A. M.
    Vasilevsky, N.
    [J]. INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2008, 69 (03) : 299 - 299
  • [6] Feng ZM, 2014, COMPUT TECHNOL DEV, V24, P35
  • [7] P300 Event-Related Potential as an Indicator of Inattentional Deafness?
    Giraudet, Louise
    St-Louis, Marie-Eve
    Scannella, Sebastien
    Causse, Mickael
    [J]. PLOS ONE, 2015, 10 (02):
  • [8] Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
    He, Lin
    Hu, Youpan
    Li, Yuanqing
    Li, Daoli
    [J]. NEUROCOMPUTING, 2013, 121 : 423 - 433
  • [9] Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS
    Herff, Christian
    Heger, Dominic
    Fortmann, Ole
    Hennrich, Johannes
    Putze, Felix
    Schultz, Tanja
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 7
  • [10] Jianqiao Liao, 1995, J SYSTEM ENG, V10, P119