ON CRAIG-LYNDON INTERPOLATION THEOREM

被引:6
|
作者
OBERSCHELP, A
机构
关键词
D O I
10.2307/2269873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:271 / +
页数:1
相关论文
共 50 条
  • [21] Lyndon Interpolation for Modal μ-Calculus
    Afshari, Bahareh
    Leigh, Graham E.
    LANGUAGE, LOGIC, AND COMPUTATION, 2022, 13206 : 197 - 213
  • [22] Craig interpolation for networks of sentences
    Keisler, H. Jerome
    Keisler, Jeffrey M.
    ANNALS OF PURE AND APPLIED LOGIC, 2012, 163 (09) : 1322 - 1344
  • [23] Craig Interpolation via Hypersequents
    Kuznets, Roman
    CONCEPTS OF PROOF IN MATHEMATICS, PHILOSOPHY, AND COMPUTER SCIENCE, 2016, 6 : 193 - 214
  • [24] Constructing Craig interpolation formulas
    Huang, GX
    COMPUTING AND COMBINATORICS, 1995, 959 : 181 - 190
  • [25] Craig interpolation and reachability analysis
    McMillan, KL
    STATIC ANALYSIS, PROCEEDINGS, 2003, 2694 : 336 - 336
  • [26] Craig Interpolation in Displayable Logics
    Brotherston, James
    Gore, Rajeev
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, 2011, 6793 : 88 - 103
  • [27] A HISTORY OF THE DEVELOPMENT OF CRAIG THEOREM
    DRISCOLL, MF
    GUNDBERG, WR
    AMERICAN STATISTICIAN, 1986, 40 (01) : 65 - 70
  • [28] Applications of Craig interpolation to model checking
    McMillan, K
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2004, 3210 : 22 - 23
  • [29] Applications of Craig interpolation to model checking
    McMillan, K
    APPLICATIONS AND THEORY OF PETRI NETS 2005, PROCEEDINGS, 2005, 3536 : 15 - 16
  • [30] PROOF OF LYNDON FINITE BASIS THEOREM
    BERMAN, J
    DISCRETE MATHEMATICS, 1980, 29 (03) : 229 - 233