THE MARTIN BOUNDARY FOR HARMONIC-FUNCTIONS ON GROUPS OF AUTOMORPHISMS OF A HOMOGENEOUS TREE

被引:1
作者
WOESS, W
机构
[1] Dipartimento di Matematica, Università di Milano, Milano, I-20133
来源
MONATSHEFTE FUR MATHEMATIK | 1995年 / 120卷 / 01期
关键词
TREE; AUTOMORPHISM GROUPS; RANDOM WALK; HARMONIC FUNCTIONS; MARTIN BOUNDARY;
D O I
10.1007/BF01470065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a closed subgroup Gamma of the automorphism group of a homogeneous tree T, and assume that Gamma acts transitively on the vertex set. Suppose that mu is a probability measure on Gamma which has continuous density with respect to Haar measure and whose support is compact open and generates Gamma as a closed semigroup. It is shown that the Martin boundary of Gamma with respect to the random walk with law mu coincides with the space of ends of T. This extends known results for free groups and applies, for example, to the affine group over a non Archimedean local field.
引用
收藏
页码:55 / 72
页数:18
相关论文
共 22 条
  • [1] ANCONA A, 1988, LECT NOTES MATH, V1344, P1
  • [2] [Anonymous], 2003, TREES-STRUCT FUNCT
  • [3] Cartier P., 1972, S MATH, V9, P203
  • [4] RANDOM-WALKS ON THE AFFINE GROUP OF LOCAL-FIELDS AND OF HOMOGENEOUS TREES
    CARTWRIGHT, DI
    KAIMANOVICH, VA
    WOESS, W
    [J]. ANNALES DE L INSTITUT FOURIER, 1994, 44 (04) : 1243 - 1288
  • [5] DERRIENN.Y, 1973, ANN I H POINCARE B, V9, P233
  • [6] RANDOM-WALK ON FREE GROUP AND MARTIN BOUNDARY
    DERRIENNIC, Y
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (04): : 261 - 276
  • [7] DOOB JL, 1959, J MATH MECH, V8, P433
  • [8] Figa-Talamanca A., 1991, HARMONIC ANAL REPRES
  • [9] GUIVARCH Y, 1977, LECT NOTES MATH, V624
  • [10] Hewitt E., 1963, ABSTRACT HARMONIC AN, VI