Accuracy Assessment of Global Land Cover Datasets in South Korea

被引:3
作者
Son, Sanghun [1 ]
Kim, Jinsoo [2 ]
机构
[1] Pukyong Natl Univ, Div Earth Environm Syst Sci, Busan, South Korea
[2] Pukyong Natl Univ, Dept Spatial Informat Engn, Busan, South Korea
关键词
Global land cover; Resolution; Reference dataset; Overall accuracy; Kappa coefficient;
D O I
10.7780/kjrs.2018.34.4.3
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The national accuracy of global land cover (GLC) products is of great importance to ecological and environmental research. However, GLC products that are derived from different satellite sensors, with differing spatial resolutions, classification methods, and classification schemes are certain to show some discrepancies. The goal of this study is to assess the accuracy of four commonly used GLC datasets in South Korea, GLC2000, GlobCover2009, MCD12Q1, and GlobeLand30. First, we compared the area of seven classes between four GLC datasets and a reference dataset. Then, we calculated the accuracy of the four GLC datasets based on an aggregated classification scheme containing seven classes, using overall, producer's and user's accuracies, and kappa coefficient. GlobeLand30 had the highest overall accuracy (77.59%). The overall accuracies of MCD12Q1, GLC2000, and GlobCover2009 were 75.51%, 68.38%, and 57.99%, respectively. These results indicate that GlobeLand30 is the most suitable dataset to support a variety of national scientific endeavors in South Korea.
引用
收藏
页码:601 / 610
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 2009, ASSESSING ACCURACY R, DOI [DOI 10.1201/9781420055139, 10.1201/9781420055139]
[2]  
Arino O., 2008, ESA B, V136, P25, DOI DOI 10.10013/EPIC.39884.D016
[3]   GLC2000:: a new approach to global land cover mapping from Earth observation data [J].
Bartholomé, E ;
Belward, AS .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (09) :1959-1977
[4]  
Bishop YMM, 1975, DISCRETE MULTIVARIAT
[5]  
Bontemps S., 2011, GLOBCOVER PRODUCTS D, V136, P10013
[6]  
Chen J, 2011, GEOM WORLD, V2, P12
[7]   Global land cover mapping at 30 m resolution: A POK-based operational approach [J].
Chen, Jun ;
Chen, Jin ;
Liao, Anping ;
Cao, Xin ;
Chen, Lijun ;
Chen, Xuehong ;
He, Chaoying ;
Han, Gang ;
Peng, Shu ;
Lu, Miao ;
Zhang, Weiwei ;
Tong, Xiaohua ;
Mills, Jon .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 103 :7-27
[8]   Global Land Cover Mapping: A Review and Uncertainty Analysis [J].
Congalton, Russell G. ;
Gu, Jianyu ;
Yadav, Kamini ;
Thenkabail, Prasad ;
Ozdogan, Mutlu .
REMOTE SENSING, 2014, 6 (12) :12070-12093
[9]   The importance of land-cover change in simulating future climates [J].
Feddema, JJ ;
Oleson, KW ;
Bonan, GB ;
Mearns, LO ;
Buja, LE ;
Meehl, GA ;
Washington, WM .
SCIENCE, 2005, 310 (5754) :1674-1678
[10]   Global land cover mapping from MODIS: algorithms and early results [J].
Friedl, MA ;
McIver, DK ;
Hodges, JCF ;
Zhang, XY ;
Muchoney, D ;
Strahler, AH ;
Woodcock, CE ;
Gopal, S ;
Schneider, A ;
Cooper, A ;
Baccini, A ;
Gao, F ;
Schaaf, C .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :287-302