GENERIC BIFURCATION OF ROTATING WAVES WITH MAXIMAL ISOTROPY

被引:0
|
作者
CHOSSAT, P
KOENIG, M
MONTALDI, J
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
1. Melbourne [9] has recently announced an existence theorem for generic bifurcation of rotating waves with maximal isotropy for vector fields which are equivariant under an absolutely irreducible action of a compact Lie group. Melbourne's proof relies on recent results of Field ([4], [5]). Rotating waves can also be interpreted as equilibria on the orbit space of the group action, and the purpose of this Note is to present a proof using geometric arguments directly on this orbit space, arguments similar to those of [7].
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [21] Generic bifurcation of refracted systems
    Buzzi, Claudio A.
    Medrado, Joao C. R.
    Teixeira, Marco A.
    ADVANCES IN MATHEMATICS, 2013, 234 : 653 - 666
  • [22] Generic and maximal Jordan types
    Friedlander, Eric M.
    Pevtsova, Julia
    Suslin, Andrei
    INVENTIONES MATHEMATICAE, 2007, 168 (03) : 485 - 522
  • [23] Maximal coherence in a generic basis
    Yao, Yao
    Dong, G. H.
    Ge, Li
    Li, Mo
    Sun, C. P.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [24] Generic and maximal Jordan types
    Eric M. Friedlander
    Julia Pevtsova
    Andrei Suslin
    Inventiones mathematicae, 2007, 168 : 485 - 522
  • [25] ON THE ORBIT STRUCTURE OF ORTHOGONAL ACTIONS WITH ISOTROPY SUBGROUPS OF MAXIMAL RANK
    SZENTHE, J
    ACTA SCIENTIARUM MATHEMATICARUM, 1981, 43 (3-4): : 353 - 367
  • [26] On Bifurcation from Steady-State Solutions to Rotating Waves in the Kuramoto-Sivashinsky Equation
    李常品
    杨忠华
    陈关荣
    Journal of Shanghai University, 2005, (04) : 286 - 291
  • [27] Degenerate bifurcation of the rotating patches
    Hmidi, Taoufik
    Mateu, Joan
    ADVANCES IN MATHEMATICS, 2016, 302 : 799 - 850
  • [28] The bifurcation measure has maximal entropy
    De Thelin, Henry
    Gauthier, Thomas
    Vigny, Gabriel
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 235 (01) : 213 - 243
  • [29] APPLICATIONS OF GENERIC BIFURCATION .2.
    CHOW, SN
    HALE, JK
    MALLETPARET, J
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1976, 62 (03) : 209 - 235
  • [30] The bifurcation measure has maximal entropy
    Henry De Thélin
    Thomas Gauthier
    Gabriel Vigny
    Israel Journal of Mathematics, 2020, 235 : 213 - 243