GENERIC BIFURCATION OF ROTATING WAVES WITH MAXIMAL ISOTROPY

被引:0
|
作者
CHOSSAT, P
KOENIG, M
MONTALDI, J
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
1. Melbourne [9] has recently announced an existence theorem for generic bifurcation of rotating waves with maximal isotropy for vector fields which are equivariant under an absolutely irreducible action of a compact Lie group. Melbourne's proof relies on recent results of Field ([4], [5]). Rotating waves can also be interpreted as equilibria on the orbit space of the group action, and the purpose of this Note is to present a proof using geometric arguments directly on this orbit space, arguments similar to those of [7].
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [11] Hopf Bifurcation from Rotating Waves and Patterns in Physical Space
    M. Golubitsky
    V. G. LeBlanc
    I. Melbourne
    Journal of Nonlinear Science, 2000, 10 : 69 - 101
  • [12] BIFURCATIONS, SYMMETRIES AND MAXIMAL ISOTROPY SUBGROUPS
    CICOGNA, G
    GAETA, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1988, 102 (05): : 451 - 470
  • [13] Isospectral orbifolds with different maximal isotropy orders
    Rossetti, Juan Pablo
    Schueth, Dorothee
    Weilandt, Martin
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (04) : 351 - 366
  • [14] Isospectral orbifolds with different maximal isotropy orders
    Juan Pablo Rossetti
    Dorothee Schueth
    Martin Weilandt
    Annals of Global Analysis and Geometry, 2008, 34 : 351 - 366
  • [15] Relic gravitational waves and isotropy of space
    Lamine, B
    Lambrecht, A
    Jaekel, MT
    Reynaud, S
    JOURNAL DE PHYSIQUE IV, 2004, 119 : 217 - 218
  • [16] On the mechanisms of the multiplicity and bifurcation of detonation waves in 3D rotating detonation engines
    He, Xiao-Jian
    Liu, Xiang -Yang
    Wang, Jian-Ping
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 130
  • [17] GENERIC BIFURCATION OF PERIODIC POINTS
    MEYER, KR
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (01) : 95 - &
  • [18] GENERIC BIFURCATION IN THE OBSTACLE PROBLEM
    MALLETPARET, J
    QUARTERLY OF APPLIED MATHEMATICS, 1980, 37 (04) : 355 - 387
  • [19] GENERIC BIFURCATION IN MANIFOLDS WITH BOUNDARY
    TEIXEIRA, MA
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (01) : 65 - 89
  • [20] GENERIC AND NON-GENERIC BIFURCATION FOR THE VONKARMAN EQUATIONS
    VANDERBAUWHEDE, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (03) : 550 - 573