ON COMPLETE MANIFOLDS OF NONNEGATIVE KTH-RICCI CURVATURE

被引:62
作者
SHEN, ZM
机构
[1] MATH SCI RES INST,BERKELEY,CA 94720
[2] SUNY,STONY BROOK,NY 11794
关键词
D O I
10.2307/2154457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish some vanishing and finiteness theorems for the topological type of complete open riemannian manifolds under certain positivity conditions for curvature. Key tools are comparison techniques and Morse Theory of Busemann and distance functions.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 28 条
[1]  
ABRESCH U, 1987, ANN SCI ECOLE NORM S, V20, P475
[2]  
ANDERSON M, COMPLETE RICCI FLAT
[3]   ON THE TOPOLOGY OF COMPLETE MANIFOLDS OF NONNEGATIVE RICCI CURVATURE [J].
ANDERSON, MT .
TOPOLOGY, 1990, 29 (01) :41-55
[4]  
[Anonymous], 1990, J AM MATH SOC
[5]   STRUCTURE OF COMPLETE MANIFOLDS OF NONNEGATIVE CURVATURE [J].
CHEEGER, J ;
GROMOLL, D .
ANNALS OF MATHEMATICS, 1972, 96 (03) :413-443
[6]  
CHEEGER J, 1990, CRITICAL POINTS DIST
[7]  
Cheeger J, 1971, J DIFFERENTIAL GEOME, V6, P119
[8]  
CHEEGER J, 1975, COMPARISON THEOREMS
[9]   INTEGRALS OF SUBHARMONIC FUNCTIONS ON MANIFOLDS OF NONNEGATIVE CURVATURE [J].
GREENE, RE ;
WU, H .
INVENTIONES MATHEMATICAE, 1974, 27 (04) :265-298
[10]  
GREENE RE, 1979, ANN SCI ECOLE NORM S, V12, P47