CURVATURE HOMOGENEOUS RIEMANNIAN-MANIFOLDS

被引:0
作者
KOWALSKI, O
TRICERRI, F
VANHECKE, L
机构
[1] UNIV FLORENCE,DIPARTIMENTO MATEMAT U DINI,I-50134 FLORENCE,ITALY
[2] KATHOLIEKE UNIV LEUVEN,DEPT MATH,B-3001 LOUVAIN,BELGIUM
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1992年 / 71卷 / 06期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an explicit construction of a wide class of semi-symmetric and curvature homogeneous n-dimensional Riemannian manifolds which are not (locally) homogeneous. Generically, we prove the irreducibility and the completeness of our examples and we also study their isometry classes.
引用
收藏
页码:471 / 501
页数:31
相关论文
共 31 条
[1]  
BERGER M, 1988, 1986 C GEOM PHYS, P11
[2]  
BESSE AL, 1987, ERGEB MATH GRENZG 10, V3
[3]  
CHEN BY, 1973, PURE APPL MATH, V22
[4]   CLIFFORD ALGEBRAS AND NEW ISOPARAMETRIC HYPERSURFACES [J].
FERUS, D ;
KARCHER, H ;
MUNZNER, HF .
MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (04) :479-502
[5]  
GRIFFITHS PD, 1974, DUKE MATH J, V41, P775, DOI 10.1215/S0012-7094-74-04180-5
[6]  
Gromov M, 1981, TEXTES MATH, V1
[7]  
GROMOV M, 1987, ERGEB MATH GRENZGE 9, V3
[8]   THE CURVATURE PROBLEM IN GENERAL-RELATIVITY [J].
HALL, GS ;
KAY, W ;
RENDALL, AD .
GENERAL RELATIVITY AND GRAVITATION, 1989, 21 (05) :439-446
[9]  
HALL GS, CURVATURE METRIC GEN
[10]  
HELGASON S., 1978, DIFFERENTIAL GEOMETR