Quotients of primes in arithmetic progressions

被引:0
作者
Micholson, Ace
机构
关键词
Arithmetic progression; Prime number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an open problem of Hobby and Silberger on quotients of primes in arithmetic progressions.
引用
收藏
页码:56 / 57
页数:2
相关论文
共 50 条
[41]   On the Partitions of a Number into Arithmetic Progressions [J].
Munagi, Augustine O. ;
Shonhiwa, Temba .
JOURNAL OF INTEGER SEQUENCES, 2008, 11 (05)
[42]   Covering intervals with arithmetic progressions [J].
Balister, P. ;
Bollobas, B. ;
Morris, R. ;
Sahasrabudhe, J. ;
Tiba, M. .
ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) :197-200
[43]   Longest arithmetic progressions of palindromes [J].
Pongsriiam, Prapanpong .
JOURNAL OF NUMBER THEORY, 2021, 222 :362-375
[44]   On the maximal length of arithmetic progressions [J].
Zhao, Minzhi ;
Zhang, Huizeng .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-21
[45]   Arithmetic progressions, quasi progressions, and Gallai-Ramsey colorings [J].
Mao, Yaping ;
Ozeki, Kenta ;
Robertson, Aaron ;
Wang, Zhao .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 193
[46]   Quotients of primes in an algebraic number ring [J].
Sittinger, Brian D. .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (02) :55-62
[47]   ON ARITHMETIC PROGRESSIONS ON GENUS TWO CURVES [J].
Ulas, Maciej .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) :971-980
[48]   The Riemann Zeta Function on Arithmetic Progressions [J].
Steuding, Joern ;
Wegert, Elias .
EXPERIMENTAL MATHEMATICS, 2012, 21 (03) :235-240
[49]   COLORINGS WITH ONLY RAINBOW ARITHMETIC PROGRESSIONS [J].
Pach, J. ;
Tomon, I. .
ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) :507-515
[50]   Maximal arithmetic progressions in random subsets [J].
Benjamini, Itai ;
Yadin, Ariel ;
Zeitouni, Ofer .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :365-376