Quotients of primes in arithmetic progressions

被引:0
作者
Micholson, Ace
机构
关键词
Arithmetic progression; Prime number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an open problem of Hobby and Silberger on quotients of primes in arithmetic progressions.
引用
收藏
页码:56 / 57
页数:2
相关论文
共 50 条
[31]   Arithmetic Progressions on Edwards Curves [J].
Bremner, Andrew .
JOURNAL OF INTEGER SEQUENCES, 2013, 16 (08)
[32]   Sums of divisors on arithmetic progressions [J].
Pongsriiam, Prapanpong .
PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (02) :443-460
[33]   THE DIVISOR PROBLEM FOR ARITHMETIC PROGRESSIONS [J].
LI, HZ .
CHINESE SCIENCE BULLETIN, 1995, 40 (04) :265-267
[34]   Arithmetic Progressions on Huff Curves [J].
Choudhry, Ajai .
JOURNAL OF INTEGER SEQUENCES, 2015, 18 (05)
[35]   ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS [J].
Banks, William D. ;
Pomerance, Carl .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 88 (03) :313-321
[36]   Covering intervals with arithmetic progressions [J].
P. Balister ;
B. Bollobás ;
R. Morris ;
J. Sahasrabudhe ;
M. Tiba .
Acta Mathematica Hungarica, 2020, 161 :197-200
[37]   CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS [J].
Matomaki, Kaisa .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 94 (02) :268-275
[38]   Arithmetic progressions and Pellian equations [J].
Aguirre, Julian ;
Dujella, Andrej ;
Carlos Peral, Juan .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (04) :683-695
[39]   The divisor problem for arithmetic progressions [J].
李红泽 .
ChineseScienceBulletin, 1995, (04) :265-267
[40]   Distinct distances and arithmetic progressions [J].
Dumitrescu, Adrian .
DISCRETE APPLIED MATHEMATICS, 2019, 256 :38-41