Quotients of primes in arithmetic progressions

被引:0
作者
Micholson, Ace
机构
关键词
Arithmetic progression; Prime number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an open problem of Hobby and Silberger on quotients of primes in arithmetic progressions.
引用
收藏
页码:56 / 57
页数:2
相关论文
共 50 条
  • [21] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [22] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [23] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626
  • [24] Powers in arithmetic progressions
    Hajdu, Lajos
    Tengely, Szabolcs
    RAMANUJAN JOURNAL, 2021, 55 (03) : 965 - 986
  • [25] Arithmetic progressions in sumsets
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 584 - 597
  • [26] On arithmetic progressions on Pellian equations
    Dujella, A.
    Petho, A.
    Tadic, P.
    ACTA MATHEMATICA HUNGARICA, 2008, 120 (1-2) : 29 - 38
  • [27] Discrepancy in modular arithmetic progressions
    Fox, Jacob
    Xu, Max Wenqiang
    Zhou, Yunkun
    COMPOSITIO MATHEMATICA, 2022, 158 (11) : 2082 - 2108
  • [28] Full powers in arithmetic progressions
    Pink, I
    Tengely, S
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (3-4): : 535 - 545
  • [29] Arithmetic Progressions on Edwards Curves
    Bremner, Andrew
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (08)
  • [30] On arithmetic progressions on Pellian equations
    A. Dujella
    A. Pethő
    P. Tadić
    Acta Mathematica Hungarica, 2008, 120 : 29 - 38