NANOSCALE SELF-ASSEMBLY FOR DELIVERY OF THERAPEUTICS AND IMAGING AGENTS

被引:4
作者
Chen, Mingnan [1 ]
McDaniel, Jonathan R. [1 ]
MacKay, J. Andrew [2 ]
Chilkoti, Ashutosh [1 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Univ Southern Calif, Dept Pharmacol & Pharmaceut Sci, Los Angeles, CA 90033 USA
关键词
Self-assembly; Vesicle; Micelle; Protein; Hydrogel; Inclusion complex;
D O I
10.3727/194982411X13003853539948
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Self-assemblies are complex structures spontaneously organized from simpler subcomponents, primarily through noncovalent interactions. These structures are being exploited as delivery vehicles of therapeutic and imaging agents. They have two unique advantages in comparison to other vehicles: 1) they are able to assume complex structures that are difficult to attain by chemical synthesis, and 2) the dissociation of self-assembled structures can be triggered by external stimuli, which can serve as a mechanism of payload release. In this review, we discuss two naturally occurring (proteins and viral capsids) and five engineered self-assemblies (vesicles, micelles, proteins, hydrogels, and inclusion complexes) that are under development for delivery of drugs and imaging agents. For each class of self-assembled supramolecular structures, we examine its structural and physicochemical properties, and potential applications within the context of assembly, loading, and payload release.
引用
收藏
页码:5 / 25
页数:21
相关论文
共 162 条
[1]   Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles [J].
Ahmed, F ;
Discher, DE .
JOURNAL OF CONTROLLED RELEASE, 2004, 96 (01) :37-53
[2]   Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug [J].
Ahmed, Fariyal ;
Pakunlu, Refika I. ;
Brannan, Aaron ;
Bates, Frank ;
Minko, Tamara ;
Discher, Dennis E. .
JOURNAL OF CONTROLLED RELEASE, 2006, 116 (02) :150-158
[3]   Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation [J].
Ahmed, Fariyal ;
Pakunlu, Refika I. ;
Srinivas, Goundla ;
Brannan, Aaron ;
Bates, Frank ;
Klein, Michael L. ;
Minko, Tamara ;
Discher, Dennis E. .
MOLECULAR PHARMACEUTICS, 2006, 3 (03) :340-350
[4]   Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes [J].
Ai, H ;
Flask, C ;
Weinberg, B ;
Shuai, X ;
Pagel, MD ;
Farrell, D ;
Duerk, J ;
Gao, JM .
ADVANCED MATERIALS, 2005, 17 (16) :1949-+
[5]   Highly sensitive MRI chemical exchange saturation transfer agents using liposomes [J].
Aime, S ;
Delli Castelli, D ;
Terreno, E .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (34) :5513-5515
[6]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[7]   Nano-engineering block copolymer aggregates for drug delivery [J].
Allen, C ;
Maysinger, D ;
Eisenberg, A .
COLLOIDS AND SURFACES B-BIOINTERFACES, 1999, 16 (1-4) :3-27
[8]   Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents [J].
Allen, M ;
Bulte, JWM ;
Liepold, L ;
Basu, G ;
Zywicke, HA ;
Frank, JA ;
Young, M ;
Douglas, T .
MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (04) :807-812
[9]   Electromechanical limits of polymersomes [J].
Aranda-Espinoza, H ;
Bermudez, H ;
Bates, FS ;
Discher, DE .
PHYSICAL REVIEW LETTERS, 2001, 87 (20) :208301-1
[10]   Stability issues of polymeric micelles [J].
Bae, You Han ;
Yin, Haiqing .
JOURNAL OF CONTROLLED RELEASE, 2008, 131 (01) :2-4