BOUNDS FOR LAGRANGE MULTIPLIERS AND OPTIMAL POINTS

被引:7
作者
HANSEN, ER [1 ]
WALSTER, GW [1 ]
机构
[1] SUNPRO,MT VIEW,CA 94043
关键词
D O I
10.1016/0898-1221(93)90282-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe two methods for use in constrained optimization problems. One method computes guaranteed bounds on both the Lagrange multipliers and on the location of the optimal points. The other method bounds the Lagrange multipliers only. Both methods provide bounds for perturbed problems. The methods can prove (in the presence of rounding) the existence or nonexistence of a solution in a given region.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 13 条
[1]   GLOBAL OPTIMIZATION WITH DATA PERTURBATIONS [J].
HANSEN, E .
COMPUTERS & OPERATIONS RESEARCH, 1984, 11 (02) :97-104
[2]   GLOBAL OPTIMIZATION USING INTERVAL-ANALYSIS - THE MULTIDIMENSIONAL CASE [J].
HANSEN, E .
NUMERISCHE MATHEMATIK, 1980, 34 (03) :247-270
[3]   INTERVAL FORMS OF NEWTONS METHOD [J].
HANSEN, E .
COMPUTING, 1978, 20 (02) :153-163
[4]   BOUNDING SOLUTIONS OF SYSTEMS OF EQUATIONS USING INTERVAL-ANALYSIS [J].
HANSEN, E ;
SENGUPTA, S .
BIT, 1981, 21 (02) :203-211
[5]   ON SOLVING SYSTEMS OF EQUATIONS USING INTERVAL ARITHMETIC [J].
HANSEN, ER .
MATHEMATICS OF COMPUTATION, 1968, 22 (102) :374-&
[6]  
HANSEN ER, 1980, INTERVAL MATH 1980
[7]  
HANSEN ER, IN PRESS GLOBAL OPTI
[8]  
HANSEN ER, 1976, SOC IND APPLIED MATH, V4, P1
[9]  
Mancini L. J., 1976, Mathematics of Operations Research, V1, P50, DOI 10.1287/moor.1.1.50
[10]  
MANCINI LJ, 1979, OPER RES, V27, P734