A NOTE ON FIRST-ORDER NORMALIZATIONS OF PERTURBED KEPLERIAN SYSTEMS

被引:17
作者
Kelly, Thomas J. [1 ]
机构
[1] Univ Cincinnati, Dept Aerosp Engn & Engn Mech, Cincinnati, OH 45221 USA
关键词
D O I
10.1007/BF02426708
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Techniques are developed to facilitate the transformation of a perturbed Keplerian system into Delaunay normal form at first order. The implicit dependence of the Hamiltonian on I, the mean anomaly, through the explicit variable. f, the true anomaly, or E, the eccentric anomaly, is removed through first order for terms of the form: {(cos)(sin)} (kf + nu) and {(cos)(sin)} (kE + nu) where the angle nu is independent of I and k is an integer constant. The procedure involves no expansion in the powers of the eccentricity.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 6 条
[1]  
Arfken G. B., 2012, MATH METHODS PHYS, V7th edn.
[2]   SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG [J].
BROUWER, D .
ASTRONOMICAL JOURNAL, 1959, 64 (09) :378-397
[3]  
BROUWER D, 1961, CELESTIAL MECH
[4]  
Deprit A., 1969, Celestial Mechanics, V1, P12, DOI 10.1007/BF01230629
[5]  
KELLY TJ, 1988, THESIS U CINCINNATI
[6]   MEAN VALUES OF COSINE FUNCTIONS IN ELLIPTIC MOTION [J].
KOZAI, Y .
ASTRONOMICAL JOURNAL, 1962, 67 (05) :311-&