AXISYMMETRIC STABILITY OF KERR BLACK-HOLES

被引:7
作者
FRIEDMAN, JL [1 ]
SCHUTZ, BF [1 ]
机构
[1] YALE UNIV,NEW HAVEN,CT 06520
关键词
D O I
10.1103/PhysRevLett.32.243
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:243 / 245
页数:3
相关论文
共 9 条
[1]   MAXIMAL ANALYTIC EXTENSION OF KERR METRIC [J].
BOYER, RH ;
LINDQUIST, RW .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (02) :265-+
[2]   AXISYMMETRIC BLACK HOLE HAS ONLY 2 DEGREES OF FREEDOM [J].
CARTER, B .
PHYSICAL REVIEW LETTERS, 1971, 26 (06) :331-+
[3]   STABILITY OF AXISYMMETRIC SYSTEMS TO AXISYMMETRIC PERTURBATIONS IN GENERAL RELATIVITY .3. VACUUM METRICS AND CARTERS THEOREM [J].
CHANDRASEKHAR, S ;
FRIEDMAN, JL .
ASTROPHYSICAL JOURNAL, 1972, 177 (03) :745-+
[4]  
de Alfaro V., 1965, POTENTIAL SCATTERING
[5]   BLACK HOLES IN GENERAL RELATIVITY [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 25 (02) :152-&
[6]  
Landau L, 1965, CLASSICAL THEORY FIE
[7]   PERTURBATIONS OF A ROTATING BLACK HOLE .2. DYNAMICAL STABILITY OF KERR METRIC [J].
PRESS, WH ;
TEUKOLSKY, SA .
ASTROPHYSICAL JOURNAL, 1973, 185 (02) :649-673
[8]   PERTURBATIONS OF A ROTATING BLACK HOLE .1. FUNDAMENTAL EQUATIONS FOR GRAVITATIONAL, ELECTROMAGNETIC, AND NEUTRINO-FIELD PERTURBATIONS [J].
TEUKOLSKY, SA .
ASTROPHYSICAL JOURNAL, 1973, 185 (02) :635-647
[9]   STABILITY OF SCHWARZSCHILD METRIC [J].
VISHVESHWARA, CV .
PHYSICAL REVIEW D, 1970, 1 (10) :2870-+