COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS

被引:0
作者
Altinkaya, Sahsene [1 ]
Yalcin, Sibel [1 ]
机构
[1] Uludag Univ, Fac Arts & Sci, Dept Math, Bursa, Turkey
来源
TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS | 2015年 / 6卷 / 02期
关键词
analytic and univalent functions; bi-univalent functions; Salagean derivative;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An analytic function f defined on the open unit disk U = {z : vertical bar z vertical bar < 1} is biunivalent if the function f and its inverse f(-1) are univalent in U. Inspired by the recent work of Hamidi et al. [8], we propose to investigate the coefficient estimates for a general class of analytic and bi-univalent functions. Also, we obtain estimates on the coefficients vertical bar a(2)vertical bar, vertical bar a(3)vertical bar and vertical bar a(n)vertical bar for functions in this class. Some earlier results are shown to be special cases of our results.
引用
收藏
页码:180 / 185
页数:6
相关论文
共 13 条
[1]   Differential calculus on the Faber polynomials [J].
Airault, H ;
Bouali, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :179-222
[2]   An algebra of differential operators and generating functions on the set of univalent functions [J].
Airault, H ;
Ren, JG .
BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (05) :343-367
[3]  
Airault H., 2007, C GROUPS SYMM
[4]  
Airault H., 2008, INT MATH FORUM, V3, P449
[5]   Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions [J].
Ali, Rosihan M. ;
Lee, See Keong ;
Ravichandran, V. ;
Supramaniam, Shamani .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :344-351
[6]  
Brannan D. A., 1986, MATH ANAL ITS APPL, V31, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[7]  
Duren P. L, 1983, GRADUATE TEXTS MATH, V259
[8]  
Hamidi G.S., 2013, INT J MATH MATH SCI
[9]  
Jahangiri J.M., 2013, INT J MATH MATH SCI, P4