A GENERAL ESTIMATOR OF THE TREATMENT EFFECT WHEN THE DATA ARE HEAVILY CENSORED

被引:0
|
作者
BASSIAKOS, YC
MENG, XL
LO, SH
机构
[1] HARVARD UNIV,DEPT STAT,CAMBRIDGE,MA 02138
[2] COLUMBIA UNIV,DEPT BIOSTAT,NEW YORK,NY 10032
关键词
BOOTSTRAP; CENSORING; HODGES-LEHMANN ESTIMATOR; KAPLAN-MEIER ESTIMATOR; SCALE PARAMETER; SHIFT PARAMETER; TREATMENT EFFECT;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A generalized Hodges-Lehmann type estimator for the treatment effect in the two-sample problem with right censoring, is proposed based on an inverse-quantile-type idea using truncated versions of the Kaplan-Meier estimators over the subspace where they are consistent. Its strong consistency and asymptotic normality can be obtained, under no conditions on the uninformative censorings, and the resulting variance is easily estimable from the data. In simulation studies the proposed estimator is superior to existing procedures in the presence of heavy unequal censoring.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 50 条