STOCHASTIC INTEGRATION OF PROCESSES WITH FINITE GENERALIZED VARIATIONS .1.

被引:1
作者
TOWGHI, N
机构
关键词
STOCHASTIC INTEGRATION; GENERALIZED VARIATIONS; BIMEASURES; RIEMANN-STIELTJES SUMS; FRECHET VARIATION;
D O I
10.1214/aop/1176988282
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper the L(1)-stochastic integral and the mixed stochastic integral of a process Y with respect to a process X is defined in a way that extends Riemann-Stieltjes integration of deterministic functions with respect to X. The L(1)-integral will include the classical Ito integral. However, the concepts of ''filtration'' and adaptability do not play any role; instead, the p-variation of Dolean functions of the processes X and Y is the determining factor.
引用
收藏
页码:629 / 667
页数:39
相关论文
共 18 条
[11]  
ITO K, 1961, LECTURES STOCHASTIC
[12]  
KAHANE JP, 1968, SOME RANDOM SERIES F
[13]  
LITTLEWOOD JE, 1930, QUART J MATH OXFORD, V1, P164, DOI [DOI 10.1093/QMATH/OS-1.1.164, 10.1093/qmath/os-1.1.164]
[14]  
Metivier M., 1980, STOCHASTIC INTEGRATI
[15]   FUNCTIONALS OF BOUNDED FRECHET VARIATION [J].
MORSE, M ;
TRANSUE, W .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (02) :153-165
[16]  
MORSE M, 1950, J INDIAN MATH SOC, V14, P65
[17]  
PETERSON K, 1977, BROWNIAN MOTION HARD
[18]   An inequality of the holder type, connected with Stieltjes integration. [J].
Young, L. C. .
ACTA MATHEMATICA, 1936, 67 (01) :251-282