STOCHASTIC INTEGRATION OF PROCESSES WITH FINITE GENERALIZED VARIATIONS .1.

被引:1
作者
TOWGHI, N
机构
关键词
STOCHASTIC INTEGRATION; GENERALIZED VARIATIONS; BIMEASURES; RIEMANN-STIELTJES SUMS; FRECHET VARIATION;
D O I
10.1214/aop/1176988282
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper the L(1)-stochastic integral and the mixed stochastic integral of a process Y with respect to a process X is defined in a way that extends Riemann-Stieltjes integration of deterministic functions with respect to X. The L(1)-integral will include the classical Ito integral. However, the concepts of ''filtration'' and adaptability do not play any role; instead, the p-variation of Dolean functions of the processes X and Y is the determining factor.
引用
收藏
页码:629 / 667
页数:39
相关论文
共 18 条
[1]  
BILLINGSLEY P, 1986, PROBABILITY MEASURE
[2]   ALPHA(Q) PROCESSES [J].
BLEI, RC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 319 (02) :777-786
[4]  
BLEI RC, 1988, P LOND MATH SOC, V56, P529
[5]   A COMPUTATION OF THE LITTLEWOOD EXPONENT OF STOCHASTIC-PROCESSES [J].
BLEI, RC ;
KAHANE, JP .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :367-370
[6]   ALPHA-CHAOS [J].
BLEI, RC .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 81 (02) :279-297
[7]  
BLEI RC, 1985, MEM AM MATH SOC, V55
[8]  
Chung K.L., 1983, INTRO STOCHASTIC INT
[9]   Bilinear functions [J].
Frechet, Maurice .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1915, 16 (1-4) :215-234
[10]  
Grothendieck A., 1956, B SOC MAT SAO PAULO, V8, P1