ON THE DIFFUSION INDUCED BY ALTERNATING RENEWAL PROCESSES

被引:3
作者
HONGLER, MO
机构
[1] Institut de Microtechnique de l'E.P.F.L.
来源
PHYSICA A | 1992年 / 188卷 / 04期
关键词
D O I
10.1016/0378-4371(92)90333-L
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of stochastic differential equations driven by non-Markovian dichotomous processes is studied analytically. The exact transition probability density is calculated. In opposition to the pure diffusive situations, the transport mechanism obtained here has finite velocity. Some illustrations are worked out explicitly.
引用
收藏
页码:597 / 606
页数:10
相关论文
共 17 条
  • [1] Abramowitz M.., 1972, HDB MATH FUNCTIONS
  • [2] Cane V. R., 1967, B INT STAT I, V42, P622
  • [3] Cox D.R., 1962, RENEWAL THEORY
  • [4] THE STEFAN PROBLEM FOR A HYPERBOLIC HEAT-EQUATION
    FRIEDMAN, A
    HU, B
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 138 (01) : 249 - 279
  • [5] TRANSPORT AND SEDIMENTATION OF PARTICLES IN A FLUID-FLOW
    GANI, J
    TODOROVIC, P
    [J]. STOCHASTIC HYDROLOGY AND HYDRAULICS, 1987, 1 (03): : 209 - 216
  • [6] Goldstein S., 1951, Q J MECH APPL MATH, V4, P130
  • [7] GENERALIZATION OF SMOLUCHOWSKIS DIFFUSION EQUATION
    HEMMER, PC
    [J]. PHYSICA, 1961, 27 (01): : 79 - &
  • [8] HERSCH R, 1974, ROCKY MT J MATH, V4, P443
  • [9] HONGLER MO, 1991, TRANSCIENT FILLING B
  • [10] HORSTHEMKE W, 1984, NOISE INDUCED TRANSI, pCH9