THE CARATHEODORY NUMBER FOR THE K-CORE

被引:3
作者
BARANY, I
PERLES, M
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
[2] HEBREW UNIV JERUSALEM,DEPT MATH,IL-91904 JERUSALEM,ISRAEL
关键词
AMS subject classification (1980): 52A20;
D O I
10.1007/BF02123009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The k-core of the set S subset-of R(n) is the intersection of the convex hull of all sets A subset-of-or-equal-to S with \S\A\ less-than-or-equal-to k. The Caratheodory number of the k-core is the smallest integer f(d, k) with the property that x member-of core(k)S, S subset-of R(n) implies the existence of a subset T subset-of-or-equal-to S such that x member-of core(k)T and \T\ less-than-or-equal-to f(d, k). In this paper various properties of f(d, k) are established.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 6 条
  • [1] Boros E., 1984, GEOM DEDICATA, V17, P69, DOI DOI 10.1007/BF00181519
  • [2] DANZER L, 1963, 7 P S PUR MATH CONV
  • [3] Grunbaum B., 2003, CONVEX POLYTOPES, V2nd
  • [4] McMullen P., 1971, CONVEX POLYTOPES UPP
  • [5] Rado R., 1946, J LOND MATH SOC, V1, P291, DOI 10.1112/jlms/s1-21.4.291
  • [6] A GENERALIZATION OF RADONS THEOREM
    TVERBERG, H
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1966, 41 (161P): : 123 - &